

Ficha Catalográfica elaborada por Marcel Pereira Santos (Bibliotecário-Documentalista: CRB8-

8060) / Biblioteca do IFSP – Campus Araraquara

Z31i

Zaniro, Dênis Leonardo; Candido, Edilson José Davoglio;

Duarte, Fernando Vieira; Holanda, José Arnaldo Mascagni de

Introdução ao desenvolvimento web com PHP e

MySQL / Dênis Leonardo Zaniro, Edilson José Davoglio Candido,

Fernando Vieira Duarte, José Arnaldo Mascagni de Holanda. – 1.

ed. – São Paulo: EDIFSP, 2025.

ISBN: 978-65-5823-048-9

1. PHP. 2. MySQL 3. Linguagem de programação de
computador. 4. Desenvolvimento de sistemas. I. Título.

CDD: 005.276

Prefácio

Este livro surgiu como resultado da experiência profissional e das vivências em sala

de aula dos professores da área de informática do Câmpus Araraquara do Instituto Federal

de São Paulo (IFSP). Para atender às demandas que normalmente surgiam no processo

de ensino e aprendizagem, formou-se uma equipe de professores com experiência em

desenvolvimento Web para trabalhar na concepção e elaboração de um material que

fornecesse apoio às diferentes práticas pedagógicas adotadas em sala de aula. A primeira

versão deste material foi elaborada e disponibilizada no ano de 2018, e passou a ser

utilizada por professores e estudantes nas aulas e nos estudos. A partir da experiência

obtida, o material foi inteiramente revisado, atualizado e ampliado. A segunda versão, que

é a base deste livro, foi disponibilizada aos professores e estudantes do Câmpus

Araraquara no ano de 2021.

A proposta é capacitar estudantes e demais interessados a compreender, analisar e

implementar sites e aplicações na Web utilizando a linguagem PHP. Fundamentos sobre

acesso a bancos de dados também são abordados pelo livro, a partir da utilização do SGBD

MySQL. Muitos conceitos, técnicas e boas práticas apresentados neste material são

aplicáveis ao desenvolvimento Web de forma geral, assim, com pouca ou nenhuma

adaptação, poderiam ser utilizados em outras linguagens e tecnologias de

desenvolvimento.

O conteúdo e a estrutura do livro foram cuidadosamente pensados para beneficiar

públicos diversificados, contemplando desde estudantes que desejem iniciar seus estudos

na área até professores e profissionais que precisem se aprofundar em algum tema

específico. Sabemos que há muitos outros livros sobre PHP e desenvolvimento para Web

disponíveis na literatura, e este não necessariamente substitui ou complementa os demais.

A partir de necessidades observadas em diferentes momentos e ações de ensino e

aprendizagem, buscou-se reunir, no mesmo material, tópicos fundamentais em

praticamente qualquer disciplina de desenvolvimento para Web. Os capítulos foram

organizados de tal modo que o leitor possa ampliar gradativamente seu conhecimento e

desenvolver habilidades de programação conforme avança pelo conteúdo. Ao criar um

caminho didático interligando vários assuntos que consideramos importantes, este livro

pode servir como uma referência completa em certos contextos ou servir de ponto de

partida direcionando a consulta a outros materiais.

Sumário

Capítulo 1. Introdução ao Desenvolvimento de Sistemas para Web 7

1.1. Programação desktop vs. programação web 7

1.2. Sites de conteúdo estático 7

1.3. Sites de conteúdo dinâmico e aplicações web 8

1.4. Arquitetura Cliente/Servidor 9

Capítulo 2. Introdução ao PHP 11

2.1. Histórico 12

2.2. Instalação e configuração do PHP 14

2.2.1. Instalação do Visual Studio Code (VS Code) 15

2.2.2. Instalação do XAMPP 21

2.3. Exercícios propostos 31

Capítulo 3. Princípios Básicos de PHP 32

3.1. Estrutura de um Programa PHP 32

3.2. Comandos de Saída de Dados 35

3.2.1 Comando echo 36

3.2.2 Comando print 36

3.2.3 Comando printf 37

3.3. Tipos de dados 37

3.3.1. Dados numéricos 38

3.3.2. Dados literais 38

3.3.2.1 Aspas simples 39

3.3.2.2 Aspas duplas 40

3.3.3. Dados lógicos 41

3.4. Variáveis 41

3.5. Operadores 44

3.5.1 Operadores Aritméticos 44

3.5.2 Operadores de Comparação 46

3.5.3 Operadores de Atribuição 46

3.5.4 Operadores lógicos 47

3.5.5 Operador ternário 48

3.5.6 Precedência de operadores 48

3.6. Constantes 49

3.7. Exercícios propostos 50

Capítulo 4. Entrada de dados 53

4.1. Formulários em HTML 53

4.2. Elemento input 55

4.2.1. Tipos text, password, submit e reset 55

4.2.2. Tipos radio e checkbox 56

4.2.3. Tipo file 59

4.2.4. Tipos novos da HTML 5 61

4.3. Elemento select 62

4.4. Elemento textarea 63

4.5. Processamento dos dados em PHP 64

4.6. Exercícios propostos 65

Capítulo 5. Estruturas de Controle 67

5.1. Estruturas de Controle Condicional 67

5.1.1. Comando if 68

5.1.2. Comando switch 72

5.1.3 Exercícios propostos 74

5.2. Estruturas de Controle de Repetição 77

5.2.1 Comando for 77

5.2.2 Comando while 78

5.2.3 Comando do..while 79

5.2.4 Comando foreach 80

5.3. Juntando tudo! 80

5.4. Exercícios propostos 84

Capítulo 6. Variáveis compostas 88

6.1. Vetores 88

6.1.1. Leitura e escrita 89

6.2. Juntando tudo! 90

6.3. Matrizes 92

6.4. Juntando tudo! 95

6.5. Exercícios propostos 97

Capítulo 7. Funções 100

7.1. Definição 100

7.2. Escopo de variáveis 102

7.3. Passagem de parâmetros: valor e referência 104

7.4. Funções recursivas 105

7.5. Juntando tudo! 105

7.6. Exercícios propostos 107

Capítulo 8. Cookies e Sessões 109

8.1 Cookies 109

8.1.1. Juntando tudo 112

8.2 Sessões 115

8.2.1. Juntando tudo 117

8.3. Exercícios de fixação 120

Capítulo 9. Importação com Include e Require 123

9.1. Comandos include e require 123

9.2. Juntando tudo 125

9.3. Comandos include_once e require_once 129

9.4. Exercícios propostos 132

Capítulo 10. Manipulação de arquivos 133

10.1. Funções de manipulação de arquivos texto 133

10.1.1. Abertura – fopen() 133

10.1.2. Fechamento – fclose() 134

10.1.3. Leitura – fread() 135

10.1.4. Leitura linha a linha – fgets() 135

10.1.5. Escrita – fwrite() 136

10.2. Juntando tudo! 137

10.3. Manipulação de arquivos no formato JSON 138

10.4. Juntando tudo! 140

10.4.1. Inserção de dados 140

10.4.2. Listagem de dados 142

10.4.3. Edição de dados 143

10.4.4. Exclusão de dados 145

10.5. Exercícios propostos 146

Capítulo 11. Acesso a Banco de Dados 149

11.1. Utilização do phpMyAdmin 149

11.2. Formas de acesso ao banco de dados 151

11.3. Conexão ao banco de dados 152

11.4. Execução de consultas SQL 153

11.5. Manipulação dos resultados da consulta 153

11.6. Encerramento da conexão 154

11.7. Juntando tudo! 154

11.7.1. Inserção de dados 155

11.7.2. Listagem de dados 156

11.7.3. Edição de dados 158

11.7.4. Remoção de dados 159

11.8. Exercícios propostos 161

Referências Bibliográficas 163

Capítulo 1. Introdução ao desenvolvimento de sistemas para web

Com a popularização da Internet e da World Wide Web (WWW), novos hábitos de

consumo, comportamento, entretenimento e comunicação foram introduzidos no cotidiano

dos seres humanos. Com o uso de linguagens, métodos e ferramentas específicas, o

desenvolvimento de sistemas para Web deve acompanhar essas mudanças na rotina das

pessoas e a complexidade dessa plataforma. Um sistema para Web envolve alguns

elementos: conteúdo, interação, navegação e armazenamento de dados. Tais elementos

são o tema central deste livro.

1.1. Programação desktop vs. programação web

 As aplicações desktop são escritas usando uma linguagem de programação (C,

Java, C#, entre outras) e geram um programa (software). Este software é instalado e

executado em um computador realizando tarefas específicas, o que torna a aplicação

dependente, ou seja, tem que ser compatível com a máquina (hardware e sistema

operacional). Também podem ser usados por vários usuários em um ambiente de rede e

podem funcionar com baixo ou quase nulo uso de Internet.

As linguagens de programação web, por sua vez, permitem desenvolver websites ou

sites acessados via internet por meio de programas chamados navegadores ou browsers.

Assim, as aplicações web possuem menos problemas de compatibilidade de hardware e

software. Os sites podem ser classificados quanto à natureza de seu conteúdo como: sites

de conteúdo estático, que não sofrem grandes alterações ao longo do tempo, e sites de

conteúdo dinâmico, que utilizam aplicações web para responder às requisições dos

usuários.

1.2. Sites de conteúdo estático

Os sites estáticos não sofrem grandes alterações em seu conteúdo ao longo do

tempo, pois contêm páginas escritas diretamente usando a linguagem de marcação HTML

(HyperText Markup Language), sem o apoio de aplicações que automatizam a geração do

seu conteúdo. Os sites estáticos são similares às páginas de uma revista ou de um jornal

impresso, cujo conteúdo não se modifica com a interação do leitor.

 Figura 1.1: Funcionamento de um site de conteúdo estático.

O funcionamento geral de um site de conteúdo estático é ilustrado na Figura 1.1.

Primeiramente, os desenvolvedores do site escrevem o conteúdo como páginas HTML,

podendo utilizar também folhas de estilo Cascading Style Sheets (CSS) e scripts na

linguagem JavaScript (JS). Este conteúdo é então disponibilizado por meio de um servidor

web. Para acessá-lo, os usuários devem utilizar um navegador ou browser para solicitar

uma página web ao servidor digitando um endereço URL (por exemplo,

http://sitedeinteresse.com). Por fim, o servidor web responde à solicitação enviando os

códigos HTML, CSS e JS originalmente escritos pelos desenvolvedores, que são

processados e exibidos pelo navegador aos usuários.

1.3. Sites de conteúdo dinâmico e aplicações web

 Os sites dinâmicos, por sua vez, permitem que o conteúdo seja gerado por

aplicações web que realizam o processamento de informações enviadas pelo usuário.

Assim, os sites tornam-se interativos e seu conteúdo pode ser modificado com facilidade.

Exemplos de sites de conteúdo dinâmico são portais de notícias, sites de comércio

eletrônico, redes sociais, entre outros.

As aplicações web, que geram o conteúdo dos sites dinâmicos, são escritas usando

uma combinação de linguagem de marcação (por exemplo, HTML) com linguagem de

programação web (por exemplo, PHP). As aplicações web são executadas em um servidor

web, cuja função é receber uma solicitação (requisição), geralmente via formulário web, e

devolver uma resposta para o cliente, como uma página HTML, por exemplo. A Figura 2

ilustra esse processo.

http://sitedeinteresse.com/

 Figura 1.2: Funcionamento de um site de conteúdo dinâmico com aplicação web.

Na Figura 1.2 é ilustrado o funcionamento geral de um site de conteúdo dinâmico.

Primeiramente, os desenvolvedores do site programam uma aplicação web combinando

linguagem de marcação (por ex.: HTML) com linguagem de programação web (por ex.:

PHP). Esta aplicação é então carregada em um servidor web. Os usuários devem utilizar

um navegador ou browser para solicitar ao servidor o processamento de uma página web,

por exemplo um formulário preenchido e submetido via clique de botão. O servidor recebe

essa solicitação e a direciona para a aplicação web realizar o processamento dos valores

preenchidos e gerar uma resposta com os códigos HTML, CSS e JS. Por fim, o servidor

web envia a resposta gerada pela aplicação web para o navegador, que a exibe para os

usuários.

Existem várias linguagens de programação para desenvolver aplicações web, sendo

que a linguagem PHP é uma das mais populares, com a vantagem de ser gratuita e de

código aberto.

1.4. Arquitetura Cliente/Servidor

 Na arquitetura cliente/servidor, o computador cliente envia uma solicitação para o

servidor através da conexão de rede. A solicitação é processada pelo servidor que retorna

a resposta para o cliente. A internet é baseada na arquitetura cliente/servidor, onde o

servidor web processa solicitações de clientes simultaneamente.

A arquitetura cliente/servidor funciona, geralmente, conforme a Figura 1.3.

Figura 1.3: Processamento de um script PHP na arquitetura cliente/servidor.

Primeiramente, o usuário cliente preenche e envia o formulário ao servidor web por

meio de uma requisição HTTP ❶. No servidor, uma aplicação web deve responder à sua

requisição. Quando recebe seus dados, a aplicação web processa o código (um script) ❷.

Dependendo das instruções, o um banco de dados pode ser acessado (consultado,

atualizado etc.), um e-mail é enviado etc. ❸. Uma página HTML é montada pela aplicação

web contendo os resultados desta requisição ❹. Finalmente, a página web gerada no

formato HTML é enviada e carregada pelo navegador do cliente ❺.

Capítulo 2. Introdução ao PHP

O PHP (acrônimo para PHP: Hypertext PreProcessor) é uma linguagem de script de

código aberto interpretada em um servidor Web (Nginx, Cloudflare Server e Apache, entre

outros) que contenha o módulo PHP instalado. Um arquivo PHP possui a extensão “.php”

e pode incluir texto, tags HTML, código CSS, JavaScript ou PHP. Após a interpretação dos

scripts pelo módulo PHP no servidor Web, o resultado é geralmente retornado para o

navegador em formato HTML. Contudo, o retorno também pode ser uma imagem, arquivos

PDF ou textos em formato XML/JSON.

Saiba mais:

Um script (também conhecido como scripting) é um conjunto de instruções capazes de

serem executadas sem a necessidade do processo de compilação. Para isso, as

linguagens de script utilizam um programa, chamado de interpretador, que é

responsável pela tradução e execução dos comandos a partir do código fonte. PHP,

Python, Perl e JavaScript são exemplos de linguagens de script.

A linguagem de script PHP é utilizada para o desenvolvimento de aplicações Web e

pode gerar conteúdos de páginas dinamicamente, manipular arquivos no servidor, coletar

os dados de formulários, gerenciar cookies e sessões, manipular bancos de dados, realizar

o controle de acesso e criptografar dados. O PHP, criado em 1994, evoluiu bastante desde

então, e possui as seguintes características:

• Compatibilidade com bancos de dados e servidores Web: PHP é compatível com

os principais bancos de dados (Db2, Firebird/Interbase, MySQL, Oracle,

PostgreSQL, SQLite e SQL Server) e com a maioria dos servidores Web,

incluindo Nginx, Cloudflare Server e Apache, que juntos, são utilizados por mais

de 85% dos websites existentes.

• Código aberto: As versões PHP são de código aberto, livres e distribuídas de

acordo com a “licença PHP”, criada pelo “PHP Group”. O código fonte pode ser

adaptado e redistribuído, o que também permitiu a disponibilização de

frameworks PHP, como Laravel e Symfony.

• Roda em várias plataformas: aplicações PHP podem ser desenvolvidas em

diversos sistemas operacionais (Linux, MacOS, Windows), instaladas em

plataformas de computação em nuvem e acessadas por diferentes navegadores.

• Suporte da comunidade: PHP possui uma comunidade que oferece suporte

online e elabora documentos, guias e tutoriais para auxiliar os novos

desenvolvedores e mostrar como novas características e funcionalidades podem

ser utilizadas.

O código PHP é delimitado pelas instruções de processamento (tags) de início e fim

<?php e ?>, que permitem a escrita de códigos PHP, inclusive embutidos em páginas

HTML. A instalação pode ser realizada a partir do site http://www.php.net. Nele, também

são disponibilizadas a documentação, comentários, exemplos e correções para os defeitos

(bugs) encontrados em versões anteriores.

Segundo o site W3Techs (https://w3techs.com/technologies/details/pl-php), em

2021, o PHP é utilizado por 78,1% dos websites que possuem uma linguagem de

programação do lado servidor (server side). Dentre eles, podemos citar Facebook, Slack,

Tesla, Tumblr, Wikipedia e WordPress.

2.1. Histórico

O PHP foi criado por Rasmus Lerdorf em 1994, mas seu anúncio ocorreu somente

em 1995. Inicialmente descrito como Personal Home Page Tools (PHP Tools), tratava-se

de um conjunto de programas CGI (Common Gateway Interface, ou Interface Comum de

Ligação) escritos em linguagem C e utilizados para o monitoramento de visitas ao currículo

online de Rasmus.

A segunda versão foi lançada por ele em 1996 e chamada de PHP/FI (Forms

Interpreter). Ela facilitava a criação de formulários, a manipulação dos dados desses

formulários em páginas subsequentes, assim como o controle de acesso nessas páginas.

Também oferecia suporte aos bancos de dados DBM, MySQL e Postgres95, cookies e

funções de apoio definidas pelo usuário.

Em 1997, os estudantes israelenses Andi Gutmans e Zeev Suraski, do Technion

(Instituto de Tecnologia de Israel), se voluntariaram para reescrever o interpretador. Eles

também criaram os primeiros recursos de orientação a objetos e um conjunto de bibliotecas

para facilitar o desenvolvimento de novas extensões. O processo de desenvolvimento do

http://www.php.net/
http://www.php.net/
https://w3techs.com/technologies/details/pl-php

PHP deixou de ser um projeto pessoal de Rasmus para se tornar um projeto de código

aberto, contando com o auxílio de Andi Gutmans, Zeev Suraski e milhares de outros

programadores mundo afora.

Como resultado do trabalho dessa esquipe, em 1998, foi lançado o PHP 3 e a

linguagem foi renomeada para PHP: Hypertext PreProcessor. Essa versão se assemelha

com o PHP utilizado atualmente e oferecia suporte a maioria dos sistemas operacionais

(Windows 95/NT, versões Unix e Macintosh), servidores Web (Apache, Netscape, WebSite

Pro e Microsoft Internet Information Server) e bancos de dados (Oracle, Sybase, Solid,

MySQL, PostgreSQL e ODBC).

Em 2000, Andi e Zeev lançaram o PHP 4.0. Essa versão foi baseada no núcleo “Zend

Engine” (o termo Zend baseou-se nos primeiros nomes de Andi e Zeev), desenvolvido por

eles em 1999, e apresentou melhorias de performance, suporte para mais servidores Web,

sessões, formas mais seguras de manipular a entrada de dados, buffer de saída e novos

recursos de orientação a objetos.

O PHP 5.0 foi lançado em 2004 e utilizava o núcleo Zend Engine 2, com um novo

modelo de objetos. Entre 2004 e 2013, foram lançadas as versões de 5.0 até 5.6,

disponibilizando um novo conjunto de extensões (SimpleXML, SOAP, MySQLi e SQLite), a

biblioteca PHP Data Objects (PDO) como uma nova interface de acesso aos bancos de

dados, suporte a JSON e fusos horários, blocos finally para tratamento de exceções,

rastreamento de progresso do upload de arquivos, melhorias significativas de desempenho

e correção de bugs. Durante esse período, também houve o lançamento do Facebook.com

(2004) como um site PHP. A empresa também desenvolveu a linguagem Hack (2014), que

estendia o PHP e contava com recursos que foram integrados a ele posteriormente. Além

disso, houve também a tentativa de lançamento, sem sucesso, do PHP 6.0, cujo projeto foi

abandonado oficialmente em 2010.

Em 2015 é disponibilizado o PHP 7.0, com o núcleo Zend Engine 3 e mais uma

renovação da linguagem, adicionando melhorias e novos recursos, possibilitando uma

versão duas vezes mais rápida do que a anterior (PHP 5.6). Novas características e

funcionalidades foram adicionadas nas versões 7.1 (2016 – modificadores de visibilidade

de constante de classe, tipos anuláveis e de retorno vazio), 7.2 (2017 – inclusão da

biblioteca libsodium para criptografia e ampliação de tipos de parâmetro), 7.3 (2018 –

atualizações para strings heredoc e nowdoc e aprimoramento do coletor de lixo) e 7.4 (2019

– funções seta, propriedades tipadas e separador literal numérico).

O PHP 8.0 foi lançado em 2020. Dentre as principais novidades estão a possibilidade

de iniciar arrays com índice negativo, expressão match, argumentos nomeados, atributos

(termo conhecido como anotações em outras linguagens), tipos de união (pode-se definir

mais de um tipo para uma variável), cláusula throw, motores de compilação JIT (Just in

Time, que promete melhorias de performance nas aplicações PHP), weak maps (permitem

a criação de objetos com referências “fracas”, que podem ser removidas pelo coletor de lixo

quando o objeto deixar de ser utilizado), operador nullsafe e vírgula de rastreamento na

lista de parâmetros.

Na tabela a seguir são listados os principais eventos e lançamentos relacionados

com o PHP, desde sua criação em 1994 até o ano de 2021.

Ano Eventos

1994 - Criação do PHP, por Rasmus Lerdorf.

1995
- Disponibilização do PHP Tools.
- Lançamento do MySQL.

1996 - Lançamento do PHP/FI (Forms Interpreter).
1997 - Reescrita do interpretador PHP, por Andi Gutmans e Zeev Suraski.

1998
- Criação do logotipo elePHPant, por Vincent Pontier.
- Lançamento do phpMyAdmin, por Tobias Ratschiller.

1999 - Fundação da empresa Zend.

2000 - Disponibilização do PHP 4.0.
2001 - Criação do framework para testes PHPUnit, por Sebastian Bergmann.
2003 - Lançamento do WordPress.

2004
- Disponibilização do PHP 5.0.
- Lançamento do Facebook como um site PHP.

2005 - Lançamento do framework CakePHP.

2006
- Início do projeto Symfony.
- Lançamento do framework CodeIgniter.

2007
- Disponibilização do PHP 5.2, cuja versão permaneceu como a mais
popular até 2013.

2011
- Lançamento do framework Laravel.
- Lançamento do gerenciador de conteúdos Composer.

2014 - Criação da linguagem de programação Hack, pelo Facebook.
2015 - Disponibilização do PHP 7.0.
2020 - Disponibilização do PHP 8.0.

2.2. Instalação e configuração do PHP

Para o desenvolvimento de aplicações Web com PHP são necessárias ferramentas

tais como editor de textos, servidor Web com suporte a PHP e servidor de banco de dados.

Além disso, é preciso realizar a configuração e gerenciamento (ativação/desativação)

desses recursos. A seguir, são apresentados os detalhes e passo a passo para instalação

do Visual Studio Code, um editor de textos, e do XAMPP, um ambiente de desenvolvimento

PHP.

• Visual Studio Code: editor de textos multiplataforma criado pela Microsoft para a

edição do código fonte. É Open Source, pode ser customizado, permite a instalação

de extensões para inclusão de novas funcionalidades e possui um grande conjunto

de atalhos para auxiliar no aumento da produtividade.

• XAMPP: ambiente de desenvolvimento PHP gratuito contendo Apache, MySQL,

PHP e Perl.

2.2.1. Instalação do Visual Studio Code (VS Code)

1) Acesse a página (https://code.visualstudio.com/) e baixe a versão para seu sistema

operacional. Para este exemplo, utilizaremos o Windows 10.

Figura 2.1 – Download da versão para Windows 10

2) Clique em “Salvar arquivo” e especifique a pasta na qual o arquivo de instalação será

armazenado. Se essa opção não for exibida, seu navegador está configurado para

download automático. Neste caso, o arquivo será armazenado, por padrão, na pasta

“Downloads”.

https://code.visualstudio.com/

Figura 2.2 – Caixa de confirmação de download para Windows 10

3) Verifique o acordo de licença. É preciso aceitá-lo antes de continuar com a

instalação.

Figura 2.3 – Acordo de licença do VS Code para Windows 10

4) Selecione o local de destino para a instalação. Recomendamos manter a pasta

sugerida por padrão.

Figura 2.4 – Seleção de local de destino para a instalação

5) Especifique a pasta do menu Iniciar na qual o instalador irá criar os atalhos do

programa.

Figura 2.5 – Especificação de local para criação de atalhos do menu iniciar

6) Escolha as tarefas adicionais. Sugere-se incluir a tarefa “Criar um atalho na área de

trabalho”.

Figura 2.6 – Seleção de tarefas adicionais

7) Verifique as configurações de instalação. Se estiver de acordo, clique em “Instalar”

para iniciar o processo.

Figura 2.7 – Verificação das configurações de instalação

8) Após o término do processo de instalação, clique em “Concluir”.

Figura 2.8 – Janela de conclusão do processo de instalação

O VS Code possui uma grande variedade de extensões que auxiliam no processo

de desenvolvimento de software. A seguir, são sugeridas duas delas para auxiliar na

criação de aplicações Web utilizando PHP: PHP Intelephense (possui características como

auto complemento de código, rápido acesso a documentação e dicas) e vscode-icons

(ícones customizados para arquivos e pastas).

Para instalar as extensões, inicialize o VS Code e, na barra lateral esquerda,

selecione o ícone “Extensões”, conforme a figura 2.9, ou utilize as teclas de atalho “Ctrl +

Shift + X”.

Figura 2.9 – Acesso às extensões do VS Code

Inicie a digitação da extensão e o próprio VS Code irá sugerir opções. Clique na

sugestão “PHP Intelephense”.

Figura 2.10 – Busca pela extensão PHP Intelephense

Uma página com detalhes da extensão é aberta, exibindo o autor, versão, quantidade

de downloads e detalhes. Clique em “Install” para adicionar a extensão a seu Ambiente de

Desenvolvimento Integrado (IDE – Integrated Development Environment) VS Code.

Figura 2.11 – Detalhes sobre a extensão PHP Intelephense

Após a instalação, é possível desabilitar ou até mesmo remover a extensão de seu

IDE.

Figura 2.12 – Opções para desabilitar e desinstalar a extensão PHP Intelephense

O processo para instalação da extensão “vscode-icons” é similar ao apresentado

anteriormente. Após a digitação de “icons” na caixa de pesquisa, ela é exibida como

primeira sugestão. Clique na extensão para que a página com os detalhes seja exibida e a

seguir, clique em “Install”.

Figura 2.13 – Opções para desabilitar e desinstalar a extensão PHP Intelephense

Após a instalação, é possível desabilitar ou até mesmo remover as extensões de seu

IDE. Elas podem ser facilmente acessadas por meio do ícone “Extensões”, na barra de

atividades (barra lateral do lado esquerdo).

2.2.2. Instalação do XAMPP

Para a instalação do XAMPP é preciso realizar o download do arquivo de instalação

e, assim como foi realizado para o VS Code, especificar a pasta na qual esse arquivo será

armazenado ou aguardar o download automático, que por padrão, será baixado na pasta

“Downloads”. Veja o passo a passo do processo nas etapas a seguir:

1) Acesse a página (https://www.apachefriends.org/pt_br/index.html) e baixe a versão para

seu sistema operacional. Para este exemplo, utilizaremos o Windows 10.

Figura 2.14 – Escolha da versão de instalação do XAMPP

2) Clique com botão direito do mouse sobre o arquivo armazenado em seu computador

e escolha a opção “Executar como administrador”. Na caixa de confirmação,

responda “Sim”.

Figura 2.15 – Janela para realizar a instalação como administrador

https://www.apachefriends.org/pt_br/index.html

3) Na tela inicial do assistente de instalação do XAMPP, clique em “Next” (próximo).

Figura 2.16 – Tela inicial do assistente para instalação

4) Selecione os componentes que deseja instalar. Neste exemplo, a configuração

padrão foi mantida.

Figura 2.17 – Seleção dos componentes que serão instalados

5) Especifique a pasta para instalação. Sugerimos “C:\xampp”. Contudo, é possível

definir outro local de sua preferência.

Figura 2.18 – Seleção da pasta para instalação

6) Especifique o idioma.

Figura 2.19 – Seleção do idioma

7) Na tela seguinte, é possível requisitar mais informações sobre o Bitnami por meio da

caixa de seleção. Não houve a escolha desta opção na instalação.

Figura 2.20 – Possibilidade de solicitação de mais informações sobre Bitnami

8) Clique em “Next” (próximo) para iniciar a instalação do XAMPP em seu computador.

Figura 2.21 – Processo de instalação pronto para ser iniciado

9) Acompanhe o processo de instalação do XAMPP até que ele seja concluído.

Figura 2.22 – Processo de instalação em andamento

10) O firewall instalado (Windows Defender) irá solicitar a liberação de acesso do

servidor Apache às redes de comunicação especificadas. Selecione conforme a

Figura 2.23.

Figura 2.23 – Confirmação de permissão para o servidor Apache comunicar-se nas redes selecionadas

11) Caso sejam solicitadas liberações de acesso de outros recursos, proceda de forma

similar ao exemplo apresentado na Figura 2.23 (passo anterior). Após as liberações

de acesso junto ao firewall, o processo de instalação é concluído. Selecione a caixa

de seleção que inicia o painel de controle do XAMPP e clique em “Finish” (Concluir).

Figura 2.24 – Conclusão do assistente de instalação

Veja a seguir o painel de controle do XAMPP:

Figura 2.25 – Painel de controle do XAMPP

Uma funcionalidade cujo ajuste de configuração pode ser necessário é a porta

utilizada pelo servidor Web (Apache). Para isso, clique em “Config”, conforme exibido na

Figura 2.26.

Figura 2.26 – Painel de controle do XAMPP – Configurações

A seguir, clique em “Service and Port Settings” (Configurações de portas e serviços).

Figura 2.27 – Opções de Configuração

Por fim, ajuste a configuração de porta conforme sua necessidade.

Figura 2.28 – Configurações de serviço

Outra funcionalidade importante é a inicialização do servidor Web Apache (ou outro

servidor escolhido). Para isso, clique em “Start” (Iniciar), conforme a Figura 2.29.

Figura 2.29 – Inicialização do Apache

Após a inicialização do servidor Web Apache, sua descrição fica destacada em fundo

verde e são exibidas as portas HTTP (80) e HTTPS (443), que estão configuradas.

Figura 2.30 – Módulo Apache iniciado

Saiba mais:

A porta, também chamada de porta TCP (Transmission Control Protocol) ou UDP

(User Datagram Protocol), é um software que permite a comunicação em rede. Ela

está associada com o endereço IP (Internet Protocol) e o tipo de protocolo utilizado

para troca de dados. A porta também auxilia em questões de segurança, pois

permite o bloqueio de protocolos específicos. No processo de desenvolvimento de

aplicações Web utiliza-se a porta HTTP 80, para a transferência de páginas WWW,

e a porta HTTPS 443, para transmissão HTTP segura.

Ao clicar no botão “Admin”, que está na linha do servidor Web Apache, a página

inicial do XAMPP será exibida em seu navegador.

Figura 2.31 – Botão Admin do Módulo Apache

É possível obter o mesmo resultado do clique no botão “Admin” digitando o endereço

(http://localhost) diretamente em seu navegador. Importante: Neste exemplo, a porta 80

está configurada para o protocolo HTTP. Por ser a porta padrão, ela não precisa ser incluída

no endereço. Se a porta 80 for alterada, por exemplo para 8080, essa nova porta deve fazer

parte do endereço (http://localhost:8080).

http://localhost/
http://localhost:8080/

Figura 2.32 – Página inicial do XAMPP

Por meio do painel de controle também é possível acessar a estrutura de pastas do

XAMPP. Para isso, utilize o botão “Explorer” (Explorar).

Figura 2.33 – Acesso a estrutura de pastas do XAMPP

Nessa estrutura, uma pasta bastante relevante é a “htdocs”. Nela são armazenadas

as aplicações desenvolvidas, organizadas em pastas, e contendo os códigos fontes,

arquivos de configuração e imagens.

Figura 2.34 – Estrutura de pastas do XAMPP

2.3. Exercícios propostos

Exercício 1. O PHP é:

a) Uma linguagem de script executada no lado cliente.

b) Uma linguagem de script executada no lado servidor.

c) Uma linguagem de script executada tanto no lado cliente quanto no lado servidor.

d) Uma linguagem de script executada pelo próprio navegador do usuário.

e) Nenhuma das alternativas anteriores.

Exercício 2. As aplicações desenvolvidas utilizando-se PHP são interpretadas:

a) Pelo navegador do usuário

b) Pelo servidor Web.

c) Pelo módulo PHP instalado no servidor Web.

d) Pelo módulo CGI instalado no servidor Web.

e) Nenhuma das alternativas anteriores.

Exercício 3. Os scripts PHP são delimitados por:

a) </php e ?>

b) (/php e ?)

c) <!php e !>

d) <#php e #>

e) <?php e ?>

Capítulo 3. Princípios Básicos de PHP

Agora que você já sabe instalar e configurar um servidor Web, iremos aprender os

princípios básicos da linguagem PHP. Para isto, inicialmente, mostraremos a estrutura

básica de um script PHP e como visualizar o resultado de sua execução. Em seguida,

exploraremos alguns dos fundamentos da linguagem, tais como comandos de entrada e

saída de dados, manipulação de dados, variáveis, interpolação de variáveis, operadores e

constantes. Ao final, você encontrará uma lista de exercícios para aplicar e praticar os

conceitos vistos neste capítulo.

3.1. Estrutura de um Programa PHP

Normalmente, o início da jornada de aprendizagem de uma linguagem de

programação inicia-se com um programa que imprime a mensagem “Hello world!” ou “Olá

mundo!”, no português. Aqui, daremos continuidade a essa tradição, criando nosso primeiro

programa em PHP para aprendermos sua estrutura básica.

Comece criando um arquivo em seu IDE. Salve esse arquivo com o nome

olamundo.php no diretório htdocs, localizado dentro do diretório de instalação do XAMPP.

Depois, escreva o código do Exemplo 3.1 dentro do arquivo:

Exemplo 3.1 – Primeiro programa em PHP.

O próximo passo é obter o resultado da execução desse script. Antes, contudo,

verifique se o seu servidor web está ativo, pois é necessário que esteja para que esse

programa funcione. Abra o seu navegador e digite o seguinte endereço:

localhost/olamundo.php. Você deverá observar a frase “Olá mundo!” sendo exibida em

seu navegador, assim como na Figura 3.1.

Figura 3.1 - Saída do código descrito no Exemplo 3.1 no navegador Web.

Vamos ver, brevemente, como cada linha de código PHP do script funciona. Em

primeiro lugar, nota-se que um programa escrito em PHP pode possuir comandos em HTML

e códigos em PHP. Os comandos HTML devem aparecer fora das tags <?php e ?>, pois

essas tags delimitam um trecho de programa PHP. Isso indica ao servidor Web o que deve

ser processado nesta página.

Dentro das tags <?php e ?>, na linha 9, há um texto com os símbolos // no início.

Estes símbolos indicam que o texto que vem em seguida, na mesma linha, é apenas um

comentário e será ignorado durante o processamento do código PHP. Comentários em

PHP também podem compreender várias linhas. Para isto, pode-se utilizar o /* para

começar os comentários e depois finalizá-los com o */. É uma boa prática de programação

utilizar comentários para documentar o seu programa.

Na linha 10, utilizamos o comando echo. Esse é um dos comandos mais utilizados

em scripts PHP e serve para exibir dados na tela. Mais precisamente, o comando echo irá

imprimir os dados que estão à sua frente no código HTML gerado pelo servidor Web.

Lembre-se que este HTML gerado é depois enviado ao navegador do cliente, que irá

processá-lo e exibi-lo. Em nosso exemplo, os dados impressos pelo comando echo

consistem no texto “Olá mundo!”, que é exibido no navegador.

As linhas de programação dentro das tags <?php e ?> devem sempre terminar com

; (ponto e vírgula). Caso isso não aconteça, ocorrerão erros no momento de execução da

página. Entre as tags delimitadoras do script PHP, é permitido escrever programas

utilizando todos os recursos que o PHP oferece, tais como definição e chamada de funções,

acesso a banco de dados, atribuição de valores a variáveis, fórmulas matemáticas, entre

outros.

Dica:

Para visualizar o código HTML provindo do servidor Web, basta clicar com o botão direito do

mouse sobre a página web e escolher a opção de exibir o código-fonte da página. Você notará

que o navegador não recebe nenhuma linha de código PHP, mas apenas HTML puro. Isto

porque todo o script PHP é processado no servidor Web, que retorna somente o resultado

para o navegador.

Dica:

Páginas salvas com a extensão .html, são tratadas pelo servidor web como se tivessem

apenas código HTML, ou seja, não são processadas no servidor. Quando uma página possuir

a extensão .php, o servidor web ativará o processador de hipertexto do PHP para verificar linha

a linha em busca de códigos de programação. Como consequência do processamento, o

retorno dessa página é mais lento. Por isso, só coloque a extensão .php nas páginas que

realmente possuem códigos PHP, senão será gasto um tempo desnecessário, procurando, em

cada linha, códigos que não existem na página.

É possível também escrever um programa concatenando vários scripts PHP com

comandos HTML. Essa mistura entre HTML e scripts PHP é muito útil, pois pode-se utilizar

o PHP para gerar os dados dinamicamente, enquanto o HTML é usado para formatar e

exibir esses dados nas páginas apresentadas no browser. No exemplo mostrado no

Exemplo 3.2, misturamos HTML e PHP para exibir uma mensagem com o nome de uma

pessoa.

Exemplo 3.2 – Uso do HTML e do PHP para exibir uma mensagem.

Note, nesse exemplo, que combinamos comandos HTML com códigos PHP. Na linha

9, atribuímos o valor “Mega Games” à variável $nome. Em PHP, variáveis começam

sempre pelo símbolo de cifrão ($). Depois, continuamos com código HTML, imprimindo o

texto “Seja bem-vindo à”. Em seguida, utilizamos comandos HTML para gerar um

parágrafo, onde, na linha 13, abrimos um trecho de código PHP para imprimirmos o valor

da variável $nome, por meio do comando echo. Para o interpretador PHP, todos os scripts

PHP dentro de uma mesma página formam um único programa.

3.2. Comandos de Saída de Dados

Considere o programa em PHP descrito na Exemplo 3.3, que calcula o preço final de

um produto.

Exemplo 3.3 – Programa que calcula o preço final de um produto.

O que será exibido pelo navegador ao solicitar essa página? Se você respondeu

nada, acertou! Um script PHP apenas consegue exibir uma informação na página se houver

um comando de saída de dados, tal como o echo.

Comandos para exibição de dados são fundamentais em qualquer linguagem de

programação. Em PHP, veremos três funções capazes de imprimir dados, cada uma com

suas próprias características.

3.2.1 Comando echo

O comando echo é o mais frequentemente utilizado em linguagem PHP. Ele é capaz

de exibir qualquer tipo de informação, tais como textos, números ou variáveis. No Exemplo

3.4 estão alguns exemplos de seu uso.

Exemplo 3.4 – Uso do comando echo.

Note as diferentes utilizações do comando echo. Na linha 3, o comando echo

imprime o valor da variável $linguagem. Na linha 4, o comando imprime a tag
 no

código HTML, gerando assim, uma mudança de linha na página. Nas linhas 5 e 6, o valor

da variável $linguagem é exibido em meio a um a uma frase.

3.2.2 Comando print

O comando print é utilizado da mesma maneira que o comando echo. Contudo, o

comando print possui a capacidade de retornar um valor, que pode ser usado para verificar

se a mensagem foi realmente exibida. Devido à essa característica, o comando print torna-

se um pouco mais lento que o comando echo. O Exemplo 3.5 mostra um exemplo de uso

do print.

Exemplo 3.5 – Uso do comando print.

Neste exemplo, caso o script seja bem-sucedido ao imprimir a mensagem “Mega”,

será impresso também a mensagem “Games”.

3.2.3 Comando printf

A função printf tem uso semelhante à função de mesmo nome da linguagem C. Seu

propósito é exibir no navegador uma cadeia de caracteres (string) formatada. O Exemplo

3.6 mostra um exemplo de uso do printf.

Exemplo 3.6 – Uso do comando printf.

No exemplo, o valor da variável $linguagem será inserido no lugar do especificador

%s na string (entre aspas). De forma mais geral, os valores passados como argumentos na

função são inseridos na string por meio de especificadores com sinais de porcentagem (%).

Os especificadores mais utilizados para formatar uma string no comando printf são: %c

para caracteres; %d para números decimais; %f para números em ponto flutuante; e %s

para strings.

3.3. Tipos de dados

Para avançarmos no aprendizado de PHP, vamos agora entender como manipular

apropriadamente alguns dos tipos de dados utilizados na linguagem. Aqui, iremos

considerar os tipos mais básicos, incluindo os numéricos, literais e booleanos. Arrays serão

explicados no Capítulo 6. Outros tipos, tais como objetos e iteráveis, não serão abordados.

3.3.1. Dados numéricos

Dados do tipo numérico são dados que expressam quantidades e permitem efetuar

diversos tipos de cálculos aritméticos. Eles são representados por números em diferentes

notações, dependendo da grandeza e da base numérica utilizadas.

Os dados numéricos mais utilizados são aqueles nas bases decimal, octal e

hexadecimal, além dos números reais. A Tabela 3.1 exemplifica a representação de cada

um dos tipos de dados numéricos.

Dado

numérico

Descrição

192 Valor inteiro representado na base decimal. Nesta base, o número

deve utilizar os algarismos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9.

034 Valor inteiro representado na base octal. Nesta base, o número

deve iniciar com 0 (zero) e utilizar apenas os algarismos 0, 1, 2, 3,

4 ,5, 6 e 7.

0xFE Valor inteiro representado na base hexadecimal. Nesta base, o

número deve iniciar com 0x e utilizar os algarismos 0, 1, 2, 3, 4, 5,

6, 7, 8, 9, A, B, C, D, E e F.

3.1415 Valor real (ponto flutuante) com quatro casas decimais.

.386 Valor real com três casas decimais. É equivalente ao número 0.386.

43000000 Valor real grande que pode ser expresso em notação científica:

4.3E+7.

Tabela 3.1 - Representação dos dados numéricos.

3.3.2. Dados literais

Dados literais são sequências de caracteres delimitadas por aspas simples ou aspas

duplas, sendo também conhecidas como dados alfanuméricos ou strings. No Exemplo 3.7,

a sequência de caracteres entre aspas será exibida da mesma forma em ambos os

comandos echo.

Exemplo 3.7 - Exibição de dados literais.

A escolha do tipo de delimitador, contudo, impacta na forma como o interpretador

PHP trata as strings. Veremos agora as especificidades do uso de cada tipo de aspas em

sequências de caracteres.

3.3.2.1 Aspas simples

Ao utilizar uma sequência de caracteres delimitadas por aspas simples, é preciso ter

cuidado com textos que possuam o caractere ‘, indicando a presença de expressões entre

aspas simples ou que faça uso do sinal apóstrofo. O motivo do problema é que o

interpretador PHP irá interpretar o caractere ‘ como um delimitador, causando um erro de

execução. Veja o Exemplo 3.8.

Exemplo 3.8 – Uso incorreto do apóstrofo com as aspas simples.

Nesse exemplo, a expressão “d'água” faz uso do apóstrofo para realizar supressão

na expressão “de água”. O interpretador PHP entende o apóstrofo como um delimitador

da string “Garrafa d”, deixando a palavra “água” fora da sequência de caracteres. Como

a palavra “água” é um elemento desconhecido para o interpretador PHP, o programa irá

apresentará um erro ao ser executado.

O problema pode ser resolvido pela inserção do caractere de controle \ (barra

invertida) antes das aspas ou do apóstrofo. A \ indica ao interpretador PHP que o caractere

‘ deve ser interpretado como um texto comum e não como um delimitador. O caractere “

pode ser usado livremente dentro de uma string delimitada por aspas simples. Veja o

Exemplo 3.9.

Exemplo 3.9 – Uso do caractere de controle com aspas simples.

Dica:

Para fazer quebras de linha em uma string, use a tag
 do HTML. O uso do caractere

especial \n não terá efeito na exibição do conteúdo da página Web.

3.3.2.2 Aspas duplas

Assim como acontece com as aspas simples, é preciso ter cuidado ao utilizar o

caractere “ dentro de uma string delimitada por aspas duplas. Esse uso também poderá

confundir o interpretador PHP e causar um erro de execução. Para evitar esse problema,

basta utilizar o caractere de controle \ antes do sinal de aspas duplas para que o resultado

desejado seja obtido. Veja o Exemplo 3.10.

Exemplo 3.10 – Uso do caractere de controle com as aspas duplas.

Uma outra característica das aspas duplas como delimitadores é a possibilidade do

uso da interpolação de variáveis, A interpolação de variáveis consiste na inclusão de

valores de uma variável dentro de uma string. No Exemplo 3.11 é ilustrado esse conceito.

Exemplo 3.11 - Interpolação de variáveis utilizando aspas duplas.

Nesse exemplo, a variável $nomeloja possui o valor “Mega Games”. Ao executar

o comando echo da linha 3, será exibida a mensagem “Bem-vindo ao site da Mega

Games”, com a variável $nomeloja sendo substituída pelo seu valor.

Cabe observar que a interpolação de variáveis ocorre apenas quando os

delimitadores utilizados são as aspas duplas. Para obter o mesmo efeito com o uso de

aspas simples, é preciso utilizar o operador . (concatenação), que será estudado

posteriormente. Além disso, não é possível utilizar a interpolação para arrays e funções.

Dica:

Para utilizar o caractere $ dentro de uma string delimitada por aspas duplas, use a sequência

de controle \$. Caso queira utilizar o caractere \, use \\.

3.3.3. Dados lógicos

O tipo de dado lógico ou booleano permite representar os valores verdadeiro e falso.

Este tipo de dado é bastante utilizado em estruturas de controle condicional, estruturas de

repetição e retorno de funções.

Os possíveis valores de um dado booleano são true (verdadeiro) ou false (falso).

Em PHP, esses valores são insensíveis ao caso, podendo ser escritos de diferentes

maneiras, como, por exemplo, False, FALSE, false, true ou TRUE.

3.4. Variáveis

 As variáveis são responsáveis por armazenarem valores de dados que podem ser

utilizados ao longo do programa. As variáveis são armazenadas na memória do

computador, sendo que cada uma delas possui um endereço de memória associado. Em

PHP, não é necessário realizar a declaração de variáveis, como ocorre em outras

linguagens de programação, como C, Pascal e Java. Para criar uma variável, basta atribuí-

la um valor. O tipo do valor atribuído (numérico, literal, lógico, entre outros) irá determinar

também o tipo associado àquela variável.

Em PHP, uma variável começa sempre com o símbolo $. Após este símbolo, deve

haver um identificador, que é o nome da variável. Este nome servirá para referenciar essa

variável durante a execução do programa.

O nome de uma variável deve iniciar com uma letra ou o caractere sublinhado (_)

apenas, nunca um número. Os números podem aparecer nas demais posições do nome da

variável. Na Tabela 3.2, são apresentados alguns exemplos de identificadores válidos e

inválidos para variáveis em PHP.

Válidas

$nota1

$casal20

$bisc8

Inválidas

$100vergonha

$5

$20assustar

$60nacadeira

Tabela 3.2 - Exemplos de identificadores válidos e inválidos.

Fonte: Niderauer (2017).

Cuidado!

Para nomes de variáveis, a linguagem PHP faz distinção entre letras minúsculas e maiúsculas.

Se houver uso dos dois tipos de letras, pode ocorrer confusão na utilização da variável. Por

exemplo, a variável $nota_aluno não é mesma coisa que $Nota_aluno.

Variáveis podem conter valores numéricos, alfanuméricos (strings), arrays ou

objetos. Variáveis numéricas possuem valores inteiros (decimal, hexadecimal, octal ou

binário) ou reais (ponto flutuante). A atribuição de valores numéricos a variáveis é

apresentada no Exemplo 3.12.

Exemplo 3.12 - Atribuição de valores numéricos a variáveis.

Variáveis alfanuméricas podem recebem cadeias de caracteres delimitadas por

aspas simples ou aspas duplas, conforme o Exemplo 3.13.

Exemplo 3.13 - Atribuição de valores alfanuméricos a variáveis.

Variáveis que armazenam arrays serão vistas posteriormente e variáveis que

armazenam objetos não serão abordadas neste livro.

Uma das características da linguagem PHP é que ela possui tipagem de dados fraca.

Isto significa que uma variável pode receber valores de diferentes tipos durante o programa.

Veja o Exemplo 3.14.

Exemplo 3.14 – Tipagem de dados fraca no PHP.

Nesse exemplo, o tipo da variável $produto muda a cada atribuição de valor. Na linha

2, a variável é do tipo numérico inteiro. Na linha 3, a variável $produto é do tipo numérico

de ponto flutuante (float) e na linha 4, do tipo string.

Apesar desta característica da linguagem, por vezes, é preciso fazer a conversão

manual de tipos, para que se obtenha um determinado valor no tipo desejado. Esta

operação utiliza um conversor, que deve aparecer entre parênteses antes de uma variável

ou de uma expressão. Veja o Exemplo 3.15.

Exemplo 3.15 - Conversão de tipo de uma variável.

Na linha 4 do exemplo, a variável $x, que é do tipo float, tem o seu valor convertido

para inteiro por meio do conversos int. Isto significa que a parte fracionária do valor de $x

não é considerada pela soma e, portanto, a variável $total irá receber o valor 400. Caso

seja necessário converter o valor de toda a expressão aritmética para inteiro, basta colocá-

la toda entre parênteses, conforme o Exemplo 3.16.

Exemplo 3.16 - Conversão do tipo da expressão toda.

É possível realizar a conversão para outros tipos de dados em PHP. Na Tabela 3.3

são mostrados os conversores disponíveis para os tipos básicos da linguagem.

Conversor Descrição

(int), (integer) Converte para inteiro

(real), (float), (double) Converte para ponto

flutuante

(string) Converte para string

(array) Converte para array

Tabela 3.3 - Conversores de tipos.

 3.5. Operadores

 Um operador tem o objetivo de transformar dados ou expressões fornecidas em um

outro valor. A linguagem PHP trabalha com três grupos de operadores: unários, binários e

ternários.

Operadores unários manipulam apenas um valor e são utilizados para operações

como negação (!) e incremento (++). Operadores binários, que representam a maioria dos

operadores da linguagem PHP, manipulam dois valores e retornam um valor. Exemplos são

o operador lógico ou (OR) e o operador de comparação maior ou igual (>=). O operador

ternário retorna um resultado dentre dois possíveis, dada a avaliação de um terceiro valor

ou expressão.

Os três grupos de operadores são classificados em diferentes tipos: operadores

aritméticos; operadores de comparação; operadores de atribuição; operadores lógicos; e

operador ternário.

3.5.1 Operadores Aritméticos

Este tipo define operações baseadas nas operações aritméticas básicas, que são

adição, subtração, divisão e multiplicação. A Tabela 3.4 mostra os operadores binários

definidos nesse tipo.

Operador Operação Exemplo

+ Adição $valor1 + $valor2

- Subtração $valor1 - 100

* Multiplicação 10 * $valor

/ Divisão $valor / 5

% Resto $valor % 2

Tabela 3.4 - Operadores aritméticos binários.

Vale observar neste ponto que o operador de divisão “/” retorna um valor em ponto

flutuante (real), mesmo que a operação tenha sido calculada sobre dois valores inteiros.

Alguns operadores unários também realizam operações aritméticas. Estes

operadores são úteis para a simplificação de algumas operações comuns na programação,

tais como incrementos e decrementos de valores. A Tabela 3.5 exibe os operadores

aritméticos unários da linguagem PHP.

Operador Operação Exemplo

-operando Troca o sinal do

operando

-$valor

++operando Pré-incremento ++$valor

--operando Pré-decremento --$valor

operando++ Pós-incremento $valor++

operando-- Pós-decremento $valor--

Tabela 3.5 - Operadores aritméticos unários.

Apesar de muito parecidos, os operadores de pré-incremento (e pré-decremento) e

pós-incremento (e pós-decremento) atuam de forma diferente em uma avaliação de uma

expressão. Em operadores “pré”, o valor do operando é modificado antes da avaliação da

expressão em que essa operação está inserida. Já no caso de operadores “pós”, o valor

do operando é modificado após a avaliação da expressão em que a operação está inserida.

Vamos compreender melhor essa diferença por meio do Exemplo 3.17.

Exemplo 3.17 – Exemplo de operações com pré e pós incremento.

Esse programa em PHP, possui a seguinte saída:

x = 0

y = 4

z = 5

r1 = 3

r2 = 6

r3 = 4

Vamos, primeiramente, analisar a expressão contida na linha 6. Nela, a variável $r1

recebeu o valor gerado pela expressão ++$y - $x. Como a variável $y foi pré-incrementada,

seu valor passou de 3 para 4 e, somente após esse incremento, o valor da variável $x foi

subtraído. Dessa forma, o resultado armazenado em $r1 foi 3.

Na linha 7, a variável $r2 recebeu o valor gerado pela expressão $z-- + $x. Nela,

primeiramente, o resultado de $z + $x (5 + 1) é calculado e armazenado em $r2. Logo após,

ocorre o decremento da variável $z, que passa do valor 5 para o valor 4.

Na linha 8, a variável $r3 recebeu o valor gerado pela expressão --$x + $z++. Antes

de qualquer outra operação, é feito o pré-decremento do valor da variável $x, passado de

1 para 0. Em seguida, o novo valor de $x é somado com $z, tendo como resultado 4.

Finalmente, a variável $z é incrementada e fica com o valor 5.

3.5.2 Operadores de Comparação

Os operadores de comparação realizam, como o próprio nome diz, uma comparação

entre dois valores. Tais operadores retornam um valor lógico como resultado, podendo ser

verdadeiro (true) ou falso (false). A Tabela 3.6 mostra uma lista de operadores de

comparação.

Operador Operação Exemplo

== Igualdade $a == $b (Se $a for igual a $b, retorna verdadeiro)

=== Idênticos $a === $b (Se $a e $b forem iguais e forem do mesmo

tipo, retorna verdadeiro)

!= ou <> Diferente $a != $b ou $a <>$b (Se $a for diferente de $b, retorna

verdadeiro)

!== Não idênticos $a !== $b (Se $a e $b forem diferentes e não forem do

mesmo tipo, retorna verdadeiro)

< Menor $a < $b (Se $a for menor que $b, retorna verdadeiro)

<= Menor ou

igual

$a <= $b (Se $a for menor ou igual a $b, retorna

verdadeiro)

> Maior $a > $b (Se $a for maior que $b, retorna verdadeiro)

>= Maior ou igual $a >= $b (Se $a for maior ou igual a $b, retorna

verdadeiro)

Tabela 3.6 - Operadores aritméticos unários.

3.5.3 Operadores de Atribuição

Um operador de atribuição é utilizado para atribuir o valor resultante da expressão à

sua direita ao operando que está à sua esquerda, o qual é, geralmente, uma variável.

O operador de atribuição mais comum é o de sinal de igual (=). Esse operador pode

também ser utilizado em operações combinadas, conforme mostrado no Exemplo 3.18.

Exemplo 3.18 – Exemplo de operação de atribuição.

No exemplo, a variável $venda recebe o valor 1000 e à variável $desconto será

atribuído o resultado da expressão $venda * 0.2, cujo resultado é 200.

Além o uso da atribuição nesse formato, é possível combinar a atribuição com

operadores aritméticos e de concatenação, conforme mostrado na Tabela 3.7.

Operador Operação Exemplo

= Atribuição $a = $b + 10

+= Atribuição e adição $a += 10 (equivalente a $a = $a + 10)

-= Atribuição e subtração $a -= 10 (equivalente a $a = $a - 10)

*= Atribuição e

multiplicação

$a *= 10 (equivalente a $a = $a * 10)

/= Atribuição e divisão $a /= 10 (equivalente a $a = $a / 10)

%= Atribuição e módulo $a %=2 (equivalente a $a = $a % 10)

.= Atribuição e

concatenação

$texto .= $t (equivalente a $texto = $texto .

$t)

Tabela 3.7 - Combinação de atribuição e operadores aritméticos.

3.5.4 Operadores lógicos

Operadores lógicos são utilizados para realizar comparações entre expressões,

retornando os valores verdadeiro (true) ou falso (false) como resultado. Em geral, as

operações são binárias, sendo necessários dois operandos. A exceção a essa regra é o

operador ! (negação), que é unário. A Tabela 3.8 a seguir mostra os diferentes operadores

lógicos da linguagem PHP.

Operador Operação Exemplo

AND E $a AND $b (verdadeiro se $a E $b forem verdadeiros)

OR Ou $a OR $b (verdadeiro se $a OU $b forem verdadeiros)

XOR Ou

exclusivo

$a XOR $b (verdadeiro se apenas $a ou apenas $b for

verdadeiro)

&& E $a && $b (verdadeiro se $a E $b forem verdadeiros)

|| Ou $a || $b (verdadeiro se $a OU $b forem verdadeiros)

! Negação !$a (verdadeiro se $a for falso)

Tabela 3.8 - Operadores lógicos.

Embora produzam resultados idênticos, os operadores AND e && e os operadores

OR e || diferenciam-se pela precedência. Os operadores && e || possuem precedência mais

alta.

3.5.5 Operador ternário

O operador ternário é uma forma abreviada de uso da estrutura condicional if. Seu

uso ocorre da seguinte forma:

condição ? expressão 1 : expressão 2

Nesse comando, incialmente, a condição é avaliada. Caso seja verdadeira, atribui-

se o valor resultante da expressão 1. Caso contrário, atribui-se o valor da expressão 2,

como apresentado no Exemplo 3.19.

Exemplo 3.19 – Exemplo utilizando operador ternário.

3.5.6 Precedência de operadores

Os operadores da linguagem PHP seguem uma ordem de precedência. Conhecer

essa ordem é muito importante para que expressões possam ser criadas e compreendidas

corretamente. Na Tabela 3.9 é apresentada a precedência dos operadores do PHP em

ordem decrescente (da mais alta para a mais baixa).

Operador Descrição

() Parênteses

++ -- ! - Incremento, decremento, negação e negativo

* / % Multiplicação, divisão e resto

+ - . Soma, subtração e concatenação

> < >= <= Maio, menor, maior ou igual, menor ou igual

== != <> Igualdade, desigualdade

&& E lógico

|| OU lógico

?: Operador ternário

= += -= *= /= %= Operadores de atribuição

AND E lógico (menor prioridade)

XOR OU exclusivo (menor prioridade)

OR OU lógico (menor prioridade)

Tabela 3.9 - Precedência de operadores.

Primeiramente, o interpretador PHP irá executar todas as operações que estiverem

entre parênteses. Caso dentro dos parênteses haja outras operações, a ordem que estas

serão executadas é definida pela precedência de operadores descrita na tabela. Se em

uma expressão houver operadores de mesma prioridade e não existirem parênteses, o PHP

resolverá a expressão da esquerda para a direita. No Exemplo 3.20, o resultado mostrado

será x = 6 e y = 20.

Exemplo 3.20 – Exemplo de precedência de operadores em uma expressão.

3.6. Constantes

Constantes são valores predefinidos e que não mudam ao longo da execução do

programa. Em PHP, constantes são criadas utilizando o comando define e um par

nome/valor. Veja o Exemplo 3.21, com a criação e o uso de constantes.

Exemplo 3.21 – Exemplo de uso de constantes.

É importante observar que o nome de uma constante não é precedido pelo símbolo

$, como acontece com as variáveis. Assim, não é possível realizar interpolação com

constantes dentro de aspas duplas. Neste caso, deve-se utilizar o operador de

concatenação (.), conforme mostrado no Exemplo 3.21.

Algumas constantes são predefinidas na linguagem PHP, tais as apresentadas na

Tabela 3.10.

Constante Descrição

TRUE Valor verdadeiro

FALSE Valor falso

__FILE__ Nome do script que está sendo executado

__LINE__ Linha do script que está sendo executado

PHP_VERSION Versão do PHP

PHP_OS Sistema operacional no qual o PHP está sendo executado

Tabela 3.10 – Constantes da linguagem PHP.

3.7. Exercícios propostos

Exercício 1. Faça um programa em PHP que armazena os seguintes dados em variáveis

e utiliza comandos echo para apresentar os dados armazenados nessas variáveis:

• Nome (atribua à variável o seu nome);

• Idade (atribua à variável sua idade);

• Sexo (atribua à variável o seu sexo);

• Endereço (atribua à variável o seu endereço);

• Cidade (atribua à variável a sua cidade);

• Telefone (atribua à variável o seu telefone).

Exercício 2. Um funcionário recebe um salário fixo de R$ 1500,00 mais 4% de comissão

sobre as suas vendas. Faça um programa em PHP para calcular e mostrar a comissão e o

salário final do funcionário, sabendo-se que ele vendeu R$10.000,00.

Exercício 3. Sabe-se que um(a) aluno(a) da disciplina IEB do Curso Técnico em Informática

obteve nota 9.0 na primeira prova, 7.5 na segunda prova e 6.0 no projeto prático. Sabe-se

ainda que o peso da primeira prova é 3, da segunda prova 4 e do projeto prático 3. Faça

um programa em PHP para calcular e apresentar a nota final do aluno no bimestre.

Exercício 4. Dado que uma pessoa nasceu no ano de 1999 e o ano atual é 2017, faça um

programa em PHP que calcule e mostre:

• A idade da pessoa em anos;

• A idade da pessoa em meses;

• A idade da pessoa em dias;

• A idade da pessoa em semanas.

Exercício 5. Sabe-se que uma pessoa fez um depósito de R$ 4000,00 em sua conta

poupança. Sabe-se também que a taxa de juros foi de 0.67% ao mês. Faça um programa

em PHP para calcular e mostrar o valor do rendimento após um mês e o valor total depois

do rendimento.

Exercício 6. Sabe-se que um garçom vai trabalhar 12 horas em uma festa de Carnaval e

que o valor do salário-mínimo é de R$ 937,00 em 2017. Faça um programa em PHP para

calcular o salário a receber do empregado, seguindo as seguintes regras:

• A hora trabalhada vale 5% do salário-mínimo;

• O salário bruto equivale ao número de horas trabalhadas multiplicado pelo valor da

hora trabalhada;

• O imposto equivale a 3% do salário bruto;

• O salário a receber equivale ao salário bruto menos o imposto.

Exercício 7. Dado que um espetáculo teatral tem o custo de R$ 2665,00 e o preço do

convite esse espetáculo é R$ 65,00. Faça um programa em PHP para calcular e mostrar:

• A quantidade de convites que devem ser vendidos para que pelo menos o custo do

espetáculo seja alcançado.

• A quantidade de convites que devem ser vendidos para que se tenha um lucro de

23%.

Exercício 8. Faça um programa em PHP para efetuar o cálculo da quantidade de

combustível gasto em uma viagem, sabendo-se que o automóvel que faz 12Km por litro,

que o tempo gasto foi de 2 horas e meia e a velocidade média durante a viagem foi 96

Km/hora.

Exercício 9. Sabe-se que o quilowatt de energia custa R$ 0,48 e que uma residência

consumiu 137 quilowatts no mês de fevereiro de 2017. Faça um programa em PHP que

calcule e mostre:

• O valor, em reais, a ser pago por essa residência.

• O valor, em reais, a ser pago com desconto de 15%.

Exercício 10. Um hotel deseja fazer uma promoção especial de final de semana,

concedendo um desconto de 25% na diária. O hotel possui 42 apartamentos e o valor

normal da diária por apartamento é R$ 167,00. Implemente um programa em PHP para

calcular:

• Valor promocional da diária;

• Valor total a ser arrecadado caso a ocupação neste final de semana (2 diárias por

apartamento) atinja 100%;

• Valor total a ser arrecadado caso a ocupação neste final de semana atinja 70%;

• Valor que o hotel deixará de arrecadar em virtude da promoção, caso a ocupação

atinja 100%.

Exercício 11. Faça um programa em PHP que calcule o índice de massa corpórea de uma

pessoa com 67 kg de peso e a 172 cm de altura. O índice de massa corpórea mede a

relação entre peso e altura (peso em Kg, dividido pelo quadrado da altura em metros).

Capítulo 4. Entrada de dados

Em sites e aplicações Web, a principal estratégia para permitir a entrada de dados é

baseada no conceito de formulários em HTML. Assim como os formulários em papel que

precisamos preencher em muitas situações, formulários na Web permitem que um

determinado conjunto de dados seja informado e processado de alguma forma. Portanto,

com base em formulários, aplicações recebem dados, efetuam algum tipo de

processamento (por exemplo, consulta ao banco de dados) e devolvem um retorno (por

exemplo, uma página de erro ou de sucesso). A comunicação entre cliente e servidor no

momento que os dados de um formulário de autenticação são submetidos pelo usuário é

ilustrada na Figura 4.1.

Figura 4.1 - Comunicação entre cliente e servidor na submissão de um formulário.

Conforme é mostrado na Figura 4.1, ao preenchermos e submetermos nossos dados

(login e senha) para realizar a autenticação em uma aplicação Web, uma requisição HTTP

é efetuada ao servidor que contém a aplicação responsável pelo processamento dos dados

(por exemplo, um script em PHP). O código da aplicação é executado, e os dados são

processados. Neste caso, o processamento envolve basicamente consultar o banco de

dados para verificar se as credenciais informadas são válidas, isto é, se o login existe e se

a senha informada é igual à senha cadastrada para o login. Em caso positivo, uma página

de entrada poderia ser apresentada ao usuário; caso contrário, uma página de erro, ou

ainda uma mensagem de erro, poderia ser exibida.

4.1. Formulários em HTML

Para a especificação de um formulário em HTML, devemos utilizar o elemento form,

composto pelas tags <form> e </form> delimitando a estrutura de um formulário.

Propriedades do formulário são definidas por meio de atributos especificados na tag

<form>. Uma das propriedades fundamentais para qualquer formulário em HTML é o seu

destino, isto é, para onde os dados devem ser enviados assim que o formulário for

submetido. O destino é definido por meio do atributo action. O valor deste atributo pode

ser o endereço (URL) de uma aplicação ou um endereço de e-mail. No último caso, o valor

do atributo action deve ser precedido pela string “mailto:”.

Outra propriedade de qualquer formulário é o método de envio de dados que será

utilizado. O método de envio de dados é definido por meio do atributo method. Em HTML,

os métodos possíveis são GET e POST. O método GET é adequado para a solicitação de

dados de um recurso na Web, assim, para o envio de dados, é um método com várias

limitações. Ele permite apenas o envio de caracteres no padrão ASCII, e os dados enviados

são adicionados à própria URL. Dessa forma, existe limite de tamanho dos dados

(relacionado ao limite de tamanho da URL), e os dados podem ser facilmente interceptados,

além de ficarem gravados no histórico do navegador e em registros (logs) de servidores

Web. Como um aspecto fundamental de segurança, não se deve utilizar o método GET em

formulários que permitam o envio de dados sensíveis (senhas, por exemplo).

Para se obter uma segurança um pouco maior e considerando-se os formulários que

devem permitir o envio de arquivos (vídeos, fotos, etc.), utiliza-se o método POST. No

método POST, os dados são adicionados ao corpo da requisição, isto é, não são enviados

como parte da URL. Nas Figuras 4.2 e 4.3 são ilustrados como os dados informados em

um formulário qualquer são enviados utilizando-se os métodos GET e POST,

respectivamente.

Figura 4.2 - Utilização do método GET na submissão de um formulário.

Figura 4.3 - Utilização do método POST na submissão de um formulário.

4.2. Elemento input

Em HTML, um formulário possui, no mínimo, um campo para entrada de dados e um

botão para submissão. Existem diferentes tipos de elementos de formulário para a entrada

de dados. Um dos elementos de controle mais utilizados é o elemento input. Este elemento

é representado por uma tag vazia (<input />) e possui dois atributos obrigatórios: name e

type. O atributo name permite definir um nome para um elemento de controle, e é por meio

deste nome que o valor informado no campo será enviado e recuperado por uma aplicação.

Em outras palavras, podemos pensar no valor do atributo name como o nome de uma

variável que guardará o valor informado em um dado campo do formulário.

O elemento input é utilizado para representar vários tipos diferentes de elementos

de controle em um formulário (texto, número, data, data e hora, mês, botões de radio, botão

de submissão etc.). Dessa forma, é necessário especificar para o elemento input seu tipo,

isto é, o tipo de campo que ele deve representar. Este é o objetivo do atributo type. Nas

subseções seguintes, serão apresentados os principais tipos do elemento input.

4.2.1. Tipos text, password, submit e reset

No Exemplo 4.1 a seguir, é mostrado o código de um formulário composto pelos tipos

text, password, submit e reset. O tipo text (linha 5) permite a entrada de quaisquer

caracteres (letras, dígitos e caracteres especiais). O tipo password (linha 9) é como o tipo

text, entretanto mascara os caracteres digitados (por exemplo, cada caractere é exibido

como um ponto ou um asterisco). Assim, o tipo password é indicado para a digitação de

senhas, por exemplo. O formulário ainda possui dois botões: um do tipo submit (linha 10),

que permite submeter os dados informados (os dados serão enviados para o endereço

especificado como valor para o atributo action da tag form), e outro do tipo reset (linha 11)

para “resetar” o formulário, isto é, permite apagar todos os dados informados ou opções

selecionadas no formulário.

Exemplo 4.1 - Exemplo de formulário composto por elementos input.

Conforme o exemplo mostra, os campos para a entrada do login (tipo text) e da

senha (tipo password) possuem rótulos, e estes são especificados por meio do elemento

label. Este elemento permite especificar rótulos que sejam vinculados a diversos elementos

de controle de formulário. Para se definir o vínculo entre um rótulo (tag label) e um campo

de formulário, deve-se atribuir uma identificação ao campo (atributo id) e especificar o

atributo for na tag label cujo valor seja igual à identificação atribuída ao campo (valor do

atributo id).

A especificação de rótulos não apenas auxilia os usuários no preenchimento de um

formulário, mas permite que quaisquer ferramentas como leitores de tela, navegadores e

outras identifiquem quais rótulos estão associados a quais campos. Por exemplo, a partir

do vínculo entre um rótulo X e um campo Y, um leitor de tela poderá ler para uma pessoa

com deficiência visual o conteúdo do rótulo X quando o campo Y receber foco. Pode-se

verificar, portanto, que se trata de um mecanismo de acessibilidade importante em

formulários na Web.

4.2.2. Tipos radio e checkbox

Para certos itens de informação a serem obtidos em um formulário, há um conjunto

de valores predefinidos, e somente um destes valores deve ser escolhido pelo usuário. Por

exemplo, em um formulário de atualização de dados de uma instituição acadêmica,

considere um campo que solicite a situação de um dado estudante em um curso. Sabemos

que existe um conjunto de situações possíveis (matriculado, trancado, cancelado etc.). Da

mesma forma, em um formulário de cadastro, considere um campo que solicite o estado

civil de uma pessoa. De acordo com a lei brasileira, existem apenas 5 possibilidades:

solteiro, casado, separado, divorciado e viúvo. Além disso, nestes dois casos, apenas um

valor deve ser escolhido (por exemplo, a situação de um estudante no curso não pode ser

“matriculado” e “trancado” ao mesmo tempo, e uma pessoa não pode estar casada e

solteira ao mesmo tempo).

Para itens de informação cujo valor provém de um conjunto de valores predefinidos,

uma possibilidade é utilizar botões de radio. Botões de radio são especificados por meio

do elemento input do tipo radio. Cada botão representando um valor possível é

especificado por meio de uma tag input. No Exemplo 4.2 a seguir, é apresentado o código

de um formulário que simula uma questão de múltipla escolha. Cada alternativa da questão

é especificada por meio de uma tag input do tipo radio. Observe que cada tag input possui

um rótulo (tag label), e apenas a primeira possui o atributo checked, que permite deixar

um botão marcado assim que o formulário é carregado.

Outro ponto fundamental é que os botões de radio possuem o mesmo nome, isto é,

o mesmo valor para o atributo name. Especificar o mesmo valor para o atributo name, neste

caso, é necessário para que o navegador e outras ferramentas identifiquem que as opções

representadas pelos botões de radio pertencem ao mesmo grupo. Assim, a ação de marcar

uma opção faz alguma outra (aquela que estiver marcada) ser desmarcada. Além disso,

deve-se observar que cada tag input possui o atributo value, necessário para especificar

o valor de cada opção que será submetido ao servidor, caso a opção correspondente seja

marcada.

Ainda no exemplo, foi utilizado o elemento fieldset composto pelo elemento legend.

O elemento fieldset deve ser utilizado para agrupar elementos de controle em um

formulário. O elemento legend permite definir um título para o agrupamento. Neste

exemplo, o elemento fieldset foi utilizado para fornecer um agrupamento semântico para

todos os botões de radio. Por meio deste agrupamento, foi possível, por exemplo,

especificar o enunciado da pergunta de tal forma que qualquer ferramenta saiba que existe

um relacionamento entre o enunciado (título do agrupamento) e as alternativas (botões de

radio).

Exemplo 4.2 - Exemplo de formulário composto por botões de radio.

Suponha que o formulário apresentado no Exemplo 4.2 deva ser estendido para

incluir outra questão de múltipla escolha. Entretanto, nesta nova questão, pode haver mais

de uma alternativa correta. Em outras palavras, novamente será apresentado um grupo de

opções, mas o usuário poderá marcar mais de uma opção ao mesmo tempo. Neste tipo de

situação, uma possibilidade é utilizar caixas de seleção múltipla, especificadas por meio do

elemento input do tipo checkbox. O Exemplo 4.3 ilustra como este elemento é utilizado.

Observe que os mesmos atributos utilizados nos botões de radio são utilizados em caixas

do tipo checkbox.

Exemplo 4.3 - Exemplo de formulário composto por caixas de múltipla seleção.

4.2.3. Tipo file

Em muitos formulários HTML, é necessário permitir o envio de um ou mais arquivos.

Por exemplo, um formulário de cadastro de pessoas poderia exigir o envio de uma foto de

quem está sendo cadastrado; um formulário para inscrição em um processo seletivo

poderia exigir o envio de vários documentos (RG, CPF, diploma etc.), e assim por diante.

Em todos os casos em que um formulário deve permitir o envio (upload) de um ou mais

arquivos, deve-se utilizar o elemento input do tipo file. Este tipo define um campo composto

por um botão e, quando o campo ou o botão é clicado, uma janela para seleção de arquivos

é carregada pelo navegador. Por meio desta janela, o usuário pode selecionar um ou mais

arquivos de seu computador ou qualquer outro dispositivo (por exemplo, um pen-drive) para

serem enviados. O Exemplo 4.4 a seguir apresenta o código necessário para a

implementação correta de um formulário que deva permitir o envio de arquivos.

Neste exemplo, o formulário permite o envio de um único arquivo ao mesmo tempo.

Para permitir o envio de múltiplos arquivos utilizando-se o mesmo campo (tag input do tipo

file), deve-se especificar o atributo multiple na tag input. Além disso, conforme o exemplo

mostra, a tag input do tipo file possui o atributo accept. Este atributo permite especificar

o(s) tipo(s) de arquivos a serem selecionados e enviados. Trata-se apenas de um

mecanismo que permite orientar os usuários sobre o tipo de arquivo que se espera na

aplicação, e não de um mecanismo de validação. Em outras palavras, especificar o atributo

accept não garante que o tipo definido será respeitado. No Exemplo 4.4, especificou-se

como tipo esperado, o valor “image/jpeg”, que significa que a aplicação espera que seja

enviado um arquivo de imagem no formato JPEG (.jpg, .jpeg etc.). Apesar disso, conforme

apresentado, o usuário ainda pode enviar arquivos em formatos diferentes, e é

responsabilidade da aplicação (lado do servidor) conduzir a validação para se garantir que

somente imagens no formato JPEG serão aceitas.

Exemplo 4.4 - Exemplo de formulário composto pelo elemento input do tipo file.

O atributo accept admite valores especificados de diferentes formas para o tipo do

arquivo a ser enviado. A Tabela 4.1 a seguir mostra as possibilidades de valores para o

atributo accept.

Tabela 4.1 - Relação de valores possíveis para o atributo accept do elemento file.

Valor Descrição

Extensões de
arquivos

Exemplos: .gif, .jpg, .pdf, .doc, ...

audio/* Quaisquer arquivos de áudio

video/* Quaisquer arquivos de vídeo

image/* Quaisquer arquivos de imagem

Mime type Exemplos: image/gif, audio/ogg, text/html, application/pdf,
...

Para que o envio de arquivos efetivamente funcione, o formulário deve satisfazer a

duas condições: 1) o método de transmissão deve ser POST; e 2) a codificação dos dados

deve ser multipart/form-data, conforme é mostrado no Exemplo 4.4. Para especificar um

tipo de codificação diferente do tipo default (application/x-www-form-urlencoded), deve-

se utilizar o atributo enctype na tag form. Portanto, o atributo enctype permite definir a

maneira pela qual os dados serão codificados para serem enviados. As Figuras 4.1 e 4.2 já

mostraram como os dados são codificados por meio do tipo default, isto é, quando não

especificamos o atributo enctype. Por exemplo, espaços são substituídos pelo caractere

‘+’, e caracteres especiais são convertidos para valores hexadecimais em ASCII.

Entretanto, em formulários com envio de arquivos, os dados destes arquivos (dados

binários) não podem passar por nenhum tipo de conversão. Para garantir que os dados não

serão codificados, utilizamos o atributo enctype com o valor “multipart/form-data”.

4.2.4. Tipos novos da HTML 5

A linguagem HTML 5 representou um avanço significativo em relação à versão

anterior da linguagem. Especialmente em formulários, vários elementos de controle foram

criados. A seguir, são apresentados os principais elementos de controle de formulário

introduzidos na HTML 5 (todos estes tipos são representados pelo elemento input).

• Tipo number: utilizado para campos numéricos. Permite definir o valor mínimo

(atributo min) e o valor máximo (atributo max). Exemplo:

o <input type=”number” name=”idade” min=”0” max=”120” ... />

o Neste exemplo, o campo deve permitir apenas números entre 0 e 120.

• Tipo date: utilizado para datas (dia, mês e ano). Também permite definir a data

mínima e a data máxima (atributos min e max). Exemplo:

o <input type=”date” name=”data” min=”1900-02-01” ... />

o Neste exemplo, o campo deve permitir apenas datas iguais ou superiores

a 01 de fevereiro de 1900. Embora fosse possível, não especificamos uma

data máxima. Em ambos os casos (data mínima ou data máxima), o

formato para validação deve ser aaaa-mm-dd.

• Tipo time: utilizado para instantes de tempo em horas e minutos, ou em horas,

minutos e segundos. Formato para validação: hh:mm:ss.

• Tipo datetime-local: “junta” os tipos date e time em um único campo. Formato

para validação: aaaa-mm-ddThh:mm:ss.

• Tipo month: utilizado para selecionar o mês de um ano. Formato para validação:

aaaa-mm.

• Tipo week: utilizado para selecionar a semana de um ano. Formato para

validação: aaaa-Wss, onde ss é uma semana do ano (01 - 52).

• Tipo range: utilizado para escolher um valor qualitativo dentro de um intervalo (o

intervalo default é 0-100), isto é, um número cujo valor exato não é importante.

• Tipo email: utilizado para endereços de e-mail. Efetua algumas validações

básicas para o valor informado. O atributo multiple pode ser utilizado para que o

usuário informe mais de um endereço de e-mail.

Uma observação importante é que os atributos min e max podem ser utilizados nos

tipos time, datetime-local, month, week e range (além dos tipos number e date).

4.3. Elemento select

Suponha que estejamos elaborando um formulário HTML para cadastro de pessoas

e um dos itens de informação seja a unidade federativa (estado) de onde a pessoa é.

Sabemos que, no Brasil, existem 27 unidades federativas (26 estados e o Distrito Federal)

e que alguém só pode ser de uma unidade federativa ao mesmo tempo. Dessa forma, a

primeira abordagem que vem à mente para resolver este problema é utilizar botões de

radio, conforme foi visto. Entretanto, nesta abordagem, serão necessários 27 botões de

radio (cada unidade federativa sendo representada por um botão de radio). Especificar

muitos botões de radio pode afetar negativamente a usabilidade do formulário e levar a um

código mais difícil de manter.

Exemplo 4.5 - Exemplo de formulário composto pelo elemento select.

Assim, uma estratégia melhor em situações deste tipo é utilizar o elemento select,

que representa uma lista de seleção do tipo drop-down. As opções da lista apenas são

exibidas se o usuário clicar sobre a lista. Cada opção é especificada por meio do elemento

option (tags <option> e </option>), que é filho do elemento select. O Exemplo 4.5

apresenta o código de um formulário que possui o elemento select.

Conforme o exemplo mostra, ao utilizarmos o elemento select, é possível agrupar

as opções conforme algum critério. Esta estratégia pode ajudar o usuário a encontrar a

opção desejada mais facilmente especialmente quando há muitas opções envolvidas. Para

agrupar as opções, deve-se utilizar o elemento optgroup, conforme é mostrado no

Exemplo 4.5. Cada agrupamento deve possuir um título, especificado por meio do atributo

label. Para deixar uma opção selecionada por default, utilizamos o atributo selected na tag

option referente à opção default. Outro ponto fundamental do elemento select é que ele

pode ser utilizado para representar uma lista de seleção múltipla, isto é, que permita que

mais de uma opção seja selecionada ao mesmo tempo. Para alcançar este objetivo,

utilizamos o atributo multiple.

4.4. Elemento textarea

O elemento textarea é particularmente útil para os itens de informação cujo valor de

entrada é um texto longo. Por exemplo, campo para entrada de um código, campo para

envio de observações, campo para envio de reclamações etc. O elemento textarea

representa uma área de texto que possui várias linhas, diferentemente do elemento input

do tipo text, que é adequado para textos menores (de uma única linha). O Exemplo 4.6 a

seguir ilustra o código para a especificação do elemento textarea em um formulário.

Exemplo 4.6 - Exemplo de formulário composto pelo elemento textarea.

Observe que o elemento textarea é especificado por meio das tags <textarea> e

</textarea> (linhas 5 e 7). Como qualquer outro campo de formulário, o elemento textarea

inclui o atributo name (e o atributo id para o vínculo entre o campo e o rótulo).

4.5. Processamento dos dados em PHP

Os dados do formulário enviados pelo navegador ao servidor são disponibilizados a

um script em PHP por meio de arrays superglobais. O array a ser utilizado depende do

método escolhido para envio (GET ou POST). Dados enviados pelo método GET são

armazenados no array $_GET e dados enviados pelo método POST são armazenados no

array $_POST.

Assim, o programa em PHP deve acessar o array apropriado, fornecendo o nome

dos campos do formulário como chave associativa. Em outras palavras, em vez de

acessarmos os elementos do array da forma tradicional, utilizando índices numéricos,

strings serão utilizadas como índices. O Exemplo 4.7 a seguir ilustra o código de um script

em PHP necessário para acessar e manipular os dados de campos cujo nome (atributo

name) são “nome” e “idade”. No caso do envio de arquivos, para que um script em PHP

acesse e manipule os dados dos arquivos, é necessário utilizar o array superglobal

$_FILES.

Exemplo 4.7 - Exemplo de um script em PHP recebendo dados de um formulário.

 4.6. Exercícios propostos

Exercício 1. Crie um formulário de cadastro de usuários com os seguintes campos:

a. Nome (valor obrigatório).

b. Senha (valor obrigatório e não pode haver senhas com mais de 10 caracteres).

c. Vídeo e foto (apenas a foto é obrigatória).

d. Interesses (Esporte, Política e Economia). O usuário pode selecionar mais de um

interesse.

e. Deseja receber notícias pelo e-mail? (Sim ou Não).

f. O formulário deve possuir dois botões: um para submeter os dados e outro para fazer

o formulário voltar ao seu estado original.

Exercício 2. Crie um formulário que permita aos clientes de uma concessionária

submeterem os seguintes dados sobre os veículos adquiridos:

a. Marca. Valor obrigatório de, no máximo, 10 caracteres.

b. Combustível. As opções possíveis são álcool e gasolina. Os dois valores devem ser

escolhidos caso o veículo seja bicombustível.

c. Motor. Os valores possíveis são 1.0, 1.6 e 2.0.

d. Câmbio. Os valores possíveis são manual e automático.

e. Descrição. Texto longo não obrigatório.

f. Data de fabricação do veículo. A data deve ser um valor superior ou igual a

01/01/1990.

g. Data e hora de aquisição do veículo. A data deve ser um valor entre 01/01/2000 e

01/01/2018 (qualquer hora).

h. Semana do ano em que o veículo foi adquirido. O ano deve ser igual ou superior a

2000 (qualquer semana).

i. Preço unitário. O preço unitário deve ser um número positivo. Permita até duas casas

decimais de precisão.

j. Endereço de e-mail do proprietário do veículo. Mais de um endereço pode ser

informado.

k. Não utilize o mesmo tipo de elemento de controle por mais de uma vez no formulário.

Capítulo 5. Estruturas de Controle

Neste capítulo, são apresentadas as estruturas de controle que são utilizadas para

realizar decisões lógicas, testar se determinada expressão é verdadeira, repetir um bloco

de comandos por determinado número de vezes ou até para que uma condição seja

atingida.

5.1. Estruturas de Controle Condicional

Até este ponto, vimos programas em PHP que são apenas sequências simples de

comandos. Tais programas possuem um único fluxo de execução, assim como um

automóvel que trafega em uma via sem desvios ou retornos. O Exemplo 5.1. ilustra um

código com estrutura sequencial.

Exemplo 5.1 – Código utilizando estrutura sequencial.

Na Figura 5.1 é apresentado analogamente um automóvel que trafega em uma via

sem desvios ou retornos, assim com um programa sequencial.

Figura 5.1 – Programa com um único fluxo de execução.

Em geral, programas computacionais envolvem diversas estruturas que permitem

acionar fluxos de execução diferentes, caso certas condições sejam ou não atendidas. De

forma análoga, é como se um automóvel estivesse agora trafegando pelas ruas de uma

cidade e, dependendo das condições e necessidades, diferentes caminhos pudessem ser

tomados.

Os pontos de decisão de um programa são semelhantes a interseções de vias, que

podem levar a caminhos diferentes. Assim, o mesmo programa poderia ter diversos

caminhos, mas somente são percorridos aqueles que atendem às condições verificadas

nos pontos de decisão. Vários pontos de decisão em um programa são ilustrados na Figura

5.2.

Figura 5.2 – Um programa pode ter diversos caminhos possíveis.

Para permitir o acionamento de diferentes caminhos ou fluxos de execução nos

programas em PHP, serão vistas, inicialmente, as estruturas de controle condicional,

representadas pelos comandos if e switch.

5.1.1. Comando if

Este comando é formado pela palavra reservada if, que em português significa “se”,

seguida de uma expressão entre parênteses. Quando o comando é executado, a expressão

é avaliada e, caso ela seja verdadeira (true), o bloco de comandos que estiver entre chaves

será executado. Se a expressão entre parênteses for falsa (false), o bloco de comandos

dentro das chaves não será executado.

if (expressão) {
 //instruções...
}

O Exemplo 5.2 mostra um programa em PHP que verifica se um determinado número

é par. Nele é utilizado um comando if simples.

Exemplo 5.2 – Exemplo do comando if simples.

O comando if pode ser utilizado também de forma composta, com o comando else

(em português, “senão”) na sequência para especificar o bloco de comandos que será

executado caso a expressão seja avaliada como falsa.

if (expressão) {
 //instruções...
 } else {
 //instruções…
}

Se o bloco de comandos possuir somente um comando, o uso das chaves torna-se

opcional. Considera-se, contudo, uma boa prática de programação o uso das chaves

mesmo nesta situação. No Exemplo 5.3, o comando if testa se um determinado número é

par. Caso o teste seja avaliado como negativo, o bloco de comandos dentro do else é

executado.

Exemplo 5.3 – Exemplo do comando if composto.

Analogamente, um programa executar um comando condicional é como um

automóvel que trafega por uma via e se depara com uma bifurcação. Neste momento,

baseado na avaliação feita pelo condutor (no caso do programa, uma condição), toma-se

uma das direções, conforme a Figura 5.3.

Figura 5.3: A avaliação feita pelo programa determina qual direção seguir.

Continuando a analogia, é possível ainda que, tomada umas das direções, mais a

frente se encontre outra bifurcação. Neste caso, deve-se fazer uma nova avaliação para

determinar o caminho a seguir.

Considere o código do exemplo 5.4. Caso o valor da variável $salario seja maior

que 1200, a execução do programa segue para o bloco de comandos dentro do else. Ali há

outro comando condicional que avalia novamente a variável $salario. Em situações como

esta, onde há estruturas condicionais dentro de estruturas condicionais, dizemos que há

estruturas condicionais aninhadas.

Exemplo 5.4 – Estruturas condicionais aninhadas.

As estruturas condicionais aninhadas são ilustradas na Figura 5.4, utilizando a

analogia com as vias de trânsito. Caso a primeira condição avaliada seja falsa, ainda deve-

se avaliar outras condições.

Figura 5.4. Analogia com vias de trânsito e estruturas condicionais aninhadas.

Para resolver exemplos como esse, pode-se utilizar o comando elseif. Este comando

é apropriado para os casos em que há múltiplas avaliações de condições e onde cada

condição leva a um fluxo de execução diferente. Reescrevendo o Exemplo 5.4, tem-se o

código do Exemplo 5.5.

Exemplo 5.5 – Estruturas condicionais aninhadas com o comando elseif.

O comando else ao final permite contemplar todas as demais possibilidades que as

condições anteriores não contemplaram.

5.1.2. Comando switch

O comando switch é parecido com o comando if, uma vez que ambos avaliam o

valor de um argumento teste para escolher qual bloco de instruções deve ser executado. O

argumento pode ser numérico, um caractere ou uma string.

O valor do argumento teste é avaliado e se for igual ao valor de uma das constantes,

a execução do código é desviada para aquele ponto.

switch (expressão) {
 case constante1 :
 //instruções...
 break ;
 case constante2 :
 //instruções...
 break ;
 case constante3 :
 //instruções...
 break ;
 default :
 //instruções...
}

Enquanto o if utiliza várias cláusulas (if, else, elseif), a estrutura switch..case utiliza

somente uma cláusula (case), tornando o código um pouco mais organizado. O bloco

default é opcional e executado se nenhuma combinação for encontrada.

O Exemplo 5.6 mostra um programa em PHP que verifica se um determinado número

é igual a 0, 1, 2, 3 ou 4. Se o número fornecido for diferente destes, o código exibe a

mensagem “é cinco ou mais”.

Note que após cada bloco de instruções deve ser utilizado o comando break, para

que o comando switch seja encerrado e a execução do restante do código continue após

ele.

Exemplo 5.6 – Exemplo da estrutura switch..case com entrada de valor numérico.

Exemplo 5.7 – Exemplo da estrutura switch..case com entrada de valor string.

No exemplo 5.10, o valor do argumento teste é o conteúdo da variável $mes (meses

do ano em inglês). As saídas possíveis são “janeiro”, “fevereiro” ou “março”, ou ainda

“outro mês”, se o valor fornecido for diferente destes.

5.1.3 Exercícios propostos

Exercício 1. Faça uma página HTML para enviar três notas de um aluno para um programa

PHP, que recupera as notas, calcula e retorna uma nova página HTML com a média

aritmética das notas do aluno e a mensagem constante na tabela a seguir:

Média aritmética Mensagem

Média < 4,0 Reprovado

4,0 >= Média < 6,0 Reavaliação

Média >= 6,0 Aprovado

Exercício 2. Faça uma página HTML para enviar três números inteiros para um programa

PHP, que recupera os números e retorna-os uma nova página HTML em ordem crescente.

Suponha que o usuário sempre digitará três números diferentes.

Exercício 3. Elabore um programa PHP que calcule o valor a ser pago por uma compra,

considerando o preço normal de etiqueta e a escolha da condição de pagamento (enviados

por meio de um formulário HTML), e de acordo com os seguintes critérios:

Código Condição de pagamento

1 À vista em dinheiro ou cheque, recebe 10% de desconto.

2 À vista no cartão de crédito, recebe 5% de desconto.

3 Em 2 vezes, preço normal da etiqueta sem juros.

4 Em 3 vezes, preço normal da etiqueta mais juros de 10%.

Exercício 4. Elaborar um programa em PHP que recebe de uma página web 3 valores

inteiros e positivos A, B, C e verifica se eles formam ou não um triângulo. Caso os valores

formem um triângulo, deve-se calcular e imprimir o valor do perímetro do triângulo,

indicando com uma mensagem se este é equilátero (três lados iguais), isósceles (apenas

2 lados iguais) ou escaleno (todos os lados são diferentes). Se os valores não formam um

triângulo, escrever uma mensagem informando o fato. Lembre-se que em um triângulo, o

comprimento de cada lado deve ser menor que a soma dos outros dois lados.

Exercício 5. Escreva um programa em PHP que recebe de uma página HTML as

coordenadas (X, Y) de um ponto no sistema cartesiano e escrever o quadrante ao qual o

ponto pertence. Caso o ponto não pertença a nenhum quadrante, escrever se ele está sobre

o eixo X, eixo Y ou na origem.

Exercício 6. Uma empresa concederá um aumento de salário aos seus funcionários,

variável de acordo com o cargo, conforme a tabela abaixo. Faça um programa em PHP que

recebe de uma página web o salário e o cargo de um funcionário, e calcule o novo salário.

Se o cargo do funcionário não estiver na tabela, ele deverá, então, receber 40% de

aumento. Mostre o salário antigo, o novo salário e a diferença entre o salário antigo e o

novo salário.

Cargo Percentual

Gerente 10%

Engenheiro 20%

Técnico 30%

Exercício 7. O IMC (Índice de Massa Corporal) é um critério da Organização Mundial de

Saúde para dar uma indicação sobre a condição de peso de uma pessoa adulta. A fórmula

é IMC = peso / (altura)2. Elabore um programa em PHP que receba o peso e a altura de um

adulto e mostre sua condição de acordo com a tabela abaixo.

IMC em adultos Condição

Abaixo de 18,5 Abaixodo peso

Entre 18,5 e 25 Peso normal

Entre 25 e 30 Acima do peso

Acima de 30 Obeso

Exercício 8. Fazer um programa na Linguagem PHP para receber a idade de uma pessoa

e informar sua classe eleitoral, que pode ser:

• Não eleitor (abaixo de 16 anos);

• Eleitor obrigatório (entre 18 e 65 anos);

• Eleitor facultativo (entre 16 e 18 anos e maior de 65).

Exercício 9. Faça uma página HTML para enviar número inteiro entre 1 e 7 para um

programa PHP, que deverá escreva o dia da semana correspondente. Caso o usuário digite

um número fora desse intervalo, deverá aparecer uma mensagem informando que não

existe dia da semana com esse número.

Exercício 10. Criar um programa em PHP que informe a quantidade total de calorias de

uma refeição a partir do usuário, que deverá informar o prato, a sobremesa e a bebida por

meio de uma página HTML. Veja a tabela de calorias a seguir:

Prato Calorias Sobremesa Calorias Bebida Calorias

Vegetarian
o

180 cal Abacaxi 75 cal Chá 20 cal

Peixe 230 cal Sorvete diet 110 cal Suco de laranja 70 cal

Frango 250 cal Mouse diet 170 cal Suco de melão 100 cal

Carne 350 cal Mouse
chocolate

200 cal Refrigerante
diet

65 cal

Exercício 11. O governo federal abriu uma linha de crédito para os servidores federais. O

valor máximo da prestação não poderá ultrapassar 30% do salário bruto. Fazer um

programa em PHP que receba, por meio de uma página HTML, o salário bruto e o valor da

prestação, e informar se o empréstimo pode ou não ser concedido.

Exercício 12 (Desafio). Criar uma página HTML que leia o número correspondente ao mês

atual e os dígitos (somente os quatro números) de uma placa de veículo, e através do

número finalizador da placa (algarismo da casa das unidades) determine se o IPVA do

veículo vence no mês corrente, de acordo com a tabela abaixo.

Final 1 – mês (1) – Janeiro Final 6 – mês (6) – Junho

Final 2 – mês (2) – Fevereiro Final 7 – mês (7) – Julho

Final 3 – mês (3) – Março Final 8 – mês (8) – Agosto

Final 4 – mês (4) – Abril Final 9 – mês (9) – Setembro

Final 5 – mês (5) – Maio Final 0 – mês (10) – Outubro

Exercício 13 (Desafio). Criar um programa em PHP que, a partir da idade e peso do

paciente recebido por meio de uma página HTML, calcule a dosagem de determinado

medicamento e imprima a receita informando quantas gotas do medicamento o paciente

deve tomar por dose. Considere que o medicamento em questão possui 500 mg por ml, e

que cada ml corresponde a 20 gotas.

• Adultos ou adolescentes desde 12 anos, inclusive, se tiverem peso igual ou acima

de 60 quilos devem tomar 1000 mg; com peso abaixo de 60 quilos devem tomar

875 mg.

• Para crianças e adolescentes abaixo de 12 anos a dosagem é calculada pelo

peso corpóreo conforme a tabela a seguir:

Peso Dosagem

5 kg a 9 kg 125 mg

9.1 kg a 16 kg 250 mg

16.1 kg a 24 kg 375 mg

24.1 kg a 30 kg 500 mg

Acima de 30 kg 750 mg

5.2. Estruturas de Controle de Repetição

Os comandos de repetição são utilizados para repetir a execução um conjunto de

instruções por um número determinado de vezes ou até que uma condição seja atingida.

Em termos práticos, isto significa repetir comandos até que uma variável atinja determinado

valor ou que seja diferente de um valor.

A linguagem PHP define vários comandos de repetição. Veremos os comandos for,

while e do..while. O comando foreach é utilizado para percorre arrays e será estudado

mais adiante.

5.2.1 Comando for

O comando for é utilizado para repetir a execução de um conjunto de instruções por

um número determinado de vezes. Existem três parâmetros para o comando for:

inicialização, condição de parada e operação de incremento ou decremento. A sintaxe do

comando for é:

for (inicialização ; condição_de_parada ; in (de) cremento){
 // instruções
}

O parâmetro de inicialização define o valor inicial da variável que controlará a

repetição das instruções. Por exemplo, o parâmetro de inicialização $contador = 0 define

o valor inicial da variável $contador que será utilizado para controlar a repetição. O

comando da inicialização é executado uma única vez, ao iniciar o laço for. Em seguida, a

condição de parada é avaliada. O parâmetro condição_de_parada define a condição para

que a repetição continue executando.

Por exemplo, o parâmetro de condição de parada $contador < 10 define que o

conjunto de instruções deverá ser repetido enquanto esta condição seja verdadeira.

Quando esta condição for falsa, a repetição será encerrada. Após a execução das

instruções dentro do laço for, o comando de in(de)cremento é executado. No exemplo

abaixo esse comando é o $contador++. Após o incremento, a condição de parada é

avaliada novamente. Caso a condição seja verdadeira, as instruções são executadas

novamente e, caso a condição seja falsa, a repetição é encerrada, conforme o Exemplo

5.8.

Exemplo 5.8 – Exemplo do comando for.

O Exemplo 5.9 contém um programa que efetua a soma dos números inteiros do

intervalo de 1 a 10. Nele, a variável $soma é responsável por acumular as somas dos

números a cada repetição. Para isso, deve-se inicializar a variável $soma antes do laço,

de forma que ela tenha um valor válido quando for utilizada pela primeira vez.

Exemplo 5.9 – Exemplo do comando for usando uma variável acumuladora ($soma).

5.2.2 Comando while

Neste tipo de estrutura de repetição, não se conhece previamente o número de

repetições que serão executadas. Também são chamadas de estruturas de repetição

condicionais pelo fato de encerrarem sua execução mediante uma determinada condição.

O número de repetições está ligado a uma condição sujeita à modificação pelas

instruções do interior do laço. A sintaxe do comando while é:

// inicialização
while (condição_de_parada){
 // instruções
 // in(de)cremento
}

Vale ressaltar que, ao contrário do comando for, na instrução while deve-se fazer o

gerenciamento do incremento. No Exemplo 5.10, é descrito um programa que exibe a soma

dos números inteiros do intervalo de 1 a 10.

Exemplo 5.10 – Exemplo do comando while.

A sequência de comandos será repetida enquanto a condição for verdadeira ($i <=

10). Se a condição não for mais verdadeira, a repetição é interrompida e a sequência de

comandos, que estiver logo após o } da estrutura, passa a ser executada.

5.2.3 Comando do..while

A estrutura do comando do..while é muito parecida com a estrutura while. A

diferença está no fato de que o bloco de instruções é executado no mínimo uma vez. A

sintaxe do comando é:

do {
 // instruções
 // in(de)cremento
} while (condição_de_parada);

No Exemplo 5.11, é descrito um programa que exibe a soma dos números inteiros

do intervalo de 1 a 10.

Exemplo 5.11 – Exemplo do comando do..while.

Note que o do..while executa o bloco de comandos e depois testa a condição ($i <=

10) no final da estrutura. Assim como na estrutura while, deve-se fazer o gerenciamento

do incremento ($i++;).

5.2.4 Comando foreach

A estrutura foreach oferece uma maneira mais conveniente de percorrer os

elementos de um array. A sintaxe do comando é:

foreach ($ nome_do_vetor as $ elemento){
 // instruções
}

O vetor $nome_do_vetor é percorrido do primeiro ao último índice e a cada iteração

o valor do elemento corrente do vetor é atribuído à variável $elemento e o ponteiro interno

do array é avançado.

5.3. Juntando tudo!

Até aqui, foram apresentados diversos conceitos básicos para a construção de uma

página Web dinâmica utilizando a linguagem PHP. O exemplo descrito nessa seção visa

juntar os conteúdos já vistos e aplicá-los em um caso prático.

Considere um sistema que permita o cálculo e comparação de vários orçamentos de

três produtos (smartphone, notebook e smart tv) em várias lojas. Em seguida,

automaticamente, o sistema informa se o valor da compra está dentro do orçamento

(R$ 10.000,00) e também o melhor orçamento, o valor mais baixo. O número de lojas deve

ser informado ao sistema e este deve fornecer um formulário que permita inserir os preços

dos três produtos (smartphone, notebook e smart tv). As informações são o nome da loja e

o valor de cada produto. O sistema deve calcular total da compra de cada loja, que consiste

na soma do valor dos três produtos.

Caso o total da compra da loja for maior que dez mil reais, ele está acima do

orçamento. Se o total da compra for menor que três mil reais, ele estará dentro abaixo do

orçamento. Neste caso, o nome da loja e o valor do orçamento serão armazenados e

exibidos posteriormente. Se o total da compra estiver entre três e dez mil reais (inclusive),

ele estará dentro do orçamento. Ao final da execução, o sistema deve apresentar uma

página Web com uma tabela, cujas linhas mostram o nome de cada loja, o nome e valor de

cada produto, o orçamento de cada loja, além da loja mais barateira.

A página index.html, Exemplo 5.12, pede ao usuário do sistema a quantidade de

lojas, cujas valores dos produtos serão inseridos.

Exemplo 5.12 – Página index.html.

A página form_prod.php, Figura 5.13, recebe a quantidade de lojas e gera o

formulário com os campos apropriados para inserir as informações de nome e valores dos

produtos. É importante ressaltar aqui, a estratégia para gerar os valores dos nomes das

tags input. Para que haja campos com nomes únicos para cada loja, utiliza-se a variável $i

concatenada ao valor do atributo name das tags.

Exemplo 5.13 – Página form_prod.php.

No Exemplo 5.14, a página processa_prod.php é responsável por receber os

valores, calcular os orçamentos e exibir a situação final de cada loja. As informações de

cada loja são recebidas, utilizando um mecanismo semelhante ao da página anterior. Aqui,

contudo, a string usada como índice associativo da superglobal ($_GET ou $_POST) é

interpolada com a variável $i, obtendo-se assim, os nomes dos campos referentes às lojas

são enviados por meio do formulário.

Após o cálculo dos totais e a definição da situação da loja, uma linha da tabela é

gerada para cada loja com suas informações.

Exemplo 5.14 – Página processa_prod.php.

5.4. Exercícios propostos

Exercício 1. Faça uma página HTML para enviar dois números inteiros quaisquer para um

programa PHP, que deverá calcular e escrever a multiplicação entre os números recebidos

utilizando para isso apenas o operador “+”, por exemplo:

(3 * 5) = 5 + 5 + 5

(4 * 12) = 12 + 12 + 12 + 12

Exercício 2. Dado que, um número é primo quando é divisível apenas por 1 e por ele

mesmo, faça um programa em PHP que receba, por meio de uma página HTML, um número

inteiro maior que 1, verifique se o número fornecido é primo ou não e mostre uma

mensagem de “número primo” ou de “número não primo”.

Exercício 3. Faça um programa em PHP que receba, por meio de uma página HTML, um

número, calcule e mostre a tabela (gerar uma tabela do HTML) deste número, conforme

figura abaixo:

Exercício 4. Um funcionário de uma empresa recebe, anualmente, aumento salarial. Sabe-

se que:

• Esse funcionário foi contratado em 2005, com salário inicial de R$ 1000,00;

• Em 2006, ele recebeu um aumento de 1,5% sobre seu salário inicial;

• A partir de 2007 (inclusive), os aumentos salariais sempre corresponderam ao

percentual do ano anterior mais 0,1%.

Desta forma, criar um programa em PHP que obtém o ano atual (do sistema), que determina

e apresenta o salário atual deste funcionário.

Exercício 5. Criar um programa em PHP que receba de uma página HTML o valor de um

carro novo, calcule e mostre uma tabela (tabela HTML) com os seguintes dados: preço final,

quantidade de parcelas e valor das parcelas. Considere que:

• O preço final para compra à vista tem desconto de 20%;

• A quantidade de parcelas pode ser: 6, 12, 18, 24, 30, 36, 42, 48, 54 e 60; e

• Os percentuais de acréscimo, dependendo da quantidade de parcelas, encontra-

se na tabela a seguir:

Quantidade de
parcelas

Percentual de acréscimo sobre o preço
final

6 3%

12 6%

18 9%

24 12%

30 15%

36 18%

42 21%

48 24%

54 27%

60 30%

Exercício 6. Fazer um programa em PHP para gerar e escrever os 4 (quatro) primeiros

números perfeitos. Um número perfeito é aquele que é igual à soma dos seus divisores.

Por exemplo:

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

Exercício 7. Fazer um programa em PHP para escrever os X primeiros termos da

Sequência de Fibonacci. O valor de X é lido por meio de um formulário HTML. Por exemplo,

os oito primeiros termos são:

0 – 1 – 1 – 2 – 3 – 5 – 8 – 13

Exercício 8. Faça uma página HTML para enviar um número inteiro positivo para um

programa PHP, que deverá calcular e escrever o fatorial do número recebido. Sabe-se que:

n n!

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5.040

... ...

Exercício 9. Um cinema de Araraquara fez uma pesquisa entre os seus espectadores.

Cada espectador respondeu a um questionário, no qual constava sua idade e sua opinião

em relação ao filme assistido:

Opinião Código

Ótimo 3

Bom 2

Regular 1

Fazer um programa em PHP para receber os dados da pesquisa (idades e opiniões dos

espectadores, por meio de páginas HTML – uma para saber o número de espectadores e

outra com o formulário de coleta de dados), calcule e apresente:

• A média das idades das pessoas que responderam ótimo;

• A quantidade de pessoas que responderam regular;

• A porcentagem de pessoas que responderam bom, entre todos os espectadores

analisados.

Exercício 10. Foi feita uma pesquisa sobre a audiência de canal de TV em várias casas de

Araraquara, em determinado dia. Para cada casa foram fornecidos o número do canal (4,

5, 9, 11) e o número de pessoas que estavam assistindo aquele canal. Somente as casas

com TV ligada entraram na pesquisa. Faça um programa em PHP que:

• Receba um número de casas pesquisadas;

• Gere um formulário para coletar os dados das casas pesquisadas (canal e

números de espectadores);

• Calcule e apresente a porcentagem de audiência de cada canal.

Exercício 11. Foi feita uma pesquisa entre os habitantes de uma região da cidade de

Araraquara (coletar o número de habitantes que participaram da pesquisa). Foram

coletados os dados de idade, sexo (M/F) e salário. Faça um programa em PHP que, após

receber os dados, calcule e mostre:

• A média dos salários do grupo pesquisado;

• A maior e menor idade do grupo;

• A quantidade de mulheres com salário até R$ 1000,00;

• A idade e o sexo da pessoa que possui o menor salário.

Capítulo 6. Variáveis compostas

6.1. Vetores

Um vetor é uma variável composta (array) que pode armazenar vários valores ao

mesmo tempo, agrupados sob o mesmo nome (identificador) e diferenciados entre si

através de índices. Trata-se de uma variável unidimensional, em que cada índice

representa uma posição de memória em que fica armazenado um elemento do vetor. Os

índices podem ser um número ou um texto e devem aparecer entre colchetes “[]” logo após

o identificador do vetor. A Figura 6.1 apresenta uma representação gráfica de um vetor,

com as posições e os índices dos elementos do vetor.

Figura 6.1. Representação gráfica de um vetor.

Em PHP não é necessário que um array seja declarado antes de seu uso, nem

mesmo indicar o número máximo de elementos que ele deve conter. Além disso, os índices

de um array podem ser numéricos ou caracteres.

No Exemplo 6.1, é descrito um programa que declara quatro vetores de maneiras

diferentes.

Exemplo 6.1. Declaração de vetores.

O vetor $quantidade possui índices de 0 a 2 e armazena respectivamente números

inteiros de 1 a 3 em cada posição. O vetor $precoUnitario armazena os números reais

4.32, 5.75 e 6.12, referentes aos preços de produtos e com índices 0, 1 e 2

correspondentes. O vetor $cliente1 armazena no índice “código” o valor 1234, no índice

“nome” o valor "Ana Maria" e no índice "endereco" o valor "Rua Nova, 999". Note que o

vetor $cliente2 armazena os dados do cliente 2, com os mesmos índices do vetor

$cliente1, mas é declarado de maneira diferente.

6.1.1. Leitura e escrita

Em diversas situações, necessitamos ler e/ou escrever em vetores. Para tanto, é

comum a utilização da estrutura de repetição for ou foreach, como apresenta o Exemplo

6.2.

Exemplo 6.2. Utilização de estruturas de repetição para leitura/escrita de vetores.

No primeiro laço, cinco posições do vetor $totalDoPedido são percorridas e os

valores armazenados são exibidos. Note que a função sizeof() determina o tamanho do

vetor. No terceiro laço, é utilizada a instrução foreach, onde o vetor é percorrido do primeiro

ao último índice e a cada iteração o valor do elemento corrente do vetor é atribuído à

variável $valor e o ponteiro interno do array é avançado. Cada item do vetor é somado e

armazenado na variável acumuladora $soma, que é exibida no final do código.

Os dados do formulário enviados pelo navegador ao servidor são disponibilizados ao

programa PHP por meio de arrays superglobais.

No Exemplo 6.3, é descrito um programa que armazena nas variáveis $nome e

$idade as informações disponibilizadas pela variável superglobal $_POST.

Exemplo 6.3. Chaves associativas para acesso aos elementos de um vetor.

O programa em PHP deve acessar o array apropriado, fornecendo o nome dos

campos do formulário como chave associativa. Isto significa que, ao invés de acessar os

elementos do array pela forma tradicional, utilizando índices numéricos, strings serão

utilizadas como índices. No exemplo acima, as chaves associativas são "nome" e "idade",

respectivamente.

6.2. Juntando tudo!

Neste exemplo, veremos como utilizar um formulário HTML para o envio de dados

como vetores para realizar a compra de 5 produtos, a recuperação dos dados dos vetores

e a geração de uma tabela HTML com os dados recuperados.

O Exemplo 6.4 apresenta o código da página form_compras.php.

Exemplo 6.4. Código da página form_compras.php.

Dica:

Para obter o resultado do <form> enviado como um array para o script PHP, pode-se

nomear (atributo name) os elementos <input>, <select> ou <textarea>, tais como:

<input type="text" name="nomes[]" />

<input type="number" name="quantidades[]" />

<input type="number" step="0.01" name="precos[]" />

Observe os colchetes após o nome da variável, é isso que torna uma variável um

array. Opcionalmente, é possível atribuir chaves específicas para os arrays no HTML.

Se não especificar as chaves, o array preenche na ordem sequencial em que os

elementos aparecem no formulário, por exemplo, chaves 0, 1, 2, 3 e assim por diante.

Exemplo 6.5. Código da página carrinho_compras.php.

O Exemplo 6.5 apresenta o código da página carrinho_compras.php. Note que os

comandos das linhas 19, 20 e 21 recuperam os nomes, as quantidades e os preços dos 5

produtos, que foram inseridos no formulário HTML do Exemplo 6.4.

Após a recuperação dos dados dos produtos, o programa PHP gera uma tabela

HTML com os dados recuperados, além disso, calcula e apresenta o total de cada produto

e o total da compra.

6.3. Matrizes

Os arrays são estruturas lineares, ou seja, cada elemento de um array armazena um

valor por vez, por exemplo um número ou uma string. Em algumas situações, pode ser

necessário que cada elemento de um array armazene vários valores por vez, ou seja,

armazene um outro array. Por exemplo, um array pode armazenar uma agenda telefônica,

sendo que cada elemento corresponde a um contato e pode conter um outro array

armazenando uma lista de números de telefone daquele contato. Para tanto, devem ser

utilizadas estruturas multidimensionais chamadas matrizes.

As matrizes possuem um único identificador, mas possuem dois ou mais índices para

referenciar uma posição de memória. O acesso para cada dimensão de uma matriz é

realizado por meio dos colchetes []. No Exemplo 6.6, que apresenta uma agenda telefônica,

$matrizAgendaTel[0] permite acessar o array que contém a lista de números de telefone

do primeiro contato. Para acessar o segundo número de telefone do primeiro contato, deve-

se utilizar $matrizAgendaTel[0][1]. São definidos três vetores com números de telefone e

depois criada uma matriz para armazenar esses vetores. Depois, para cada índice da

primeira dimensão da matriz, são exibidos na tela os telefones armazenados em cada vetor,

utilizando o comando foreach.

Exemplo 6.6. Agenda telefônica usando matrizes.

No Exemplo 6.7, a variável matriz é um array com nove elementos (números

inteiros). Note que inicialmente, a variável pode ser um vetor (unidimensional) ou uma

matriz (bidimensional). Dentro do primeiro laço for, cada posição (índice) da variável

$matriz é inicializado como um novo array, ou seja, é criado um array com duas dimensões

(matriz). No segundo laço for, cada posição da matriz armazena o valor da variável $cont.

Exemplo 6.7. Escrita e leitura em matrizes.

Na sequência do exemplo, temos duas estruturas foreach: a primeira percorre a

variável $matriz dividindo-a num vetor e a segunda dividindo este vetor em itens, exibindo-

os na tela.

No Exemplo 6.8, são criadas duas variáveis do tipo array (vetores) compostas pelas

letras (a, b, c, d, e, f) e a matriz é criada a partir destes dois vetores.

Exemplo 6.8. Declaração de matriz a partir de dois vetores.

Novamente, na sequência do exemplo, temos duas estruturas foreach: a primeira

percorre a variável $matriz dividindo-a num vetor e a segunda dividindo este vetor em itens,

exibindo-os na tela.

6.4. Juntando tudo!

Neste exemplo, apresentamos uma variação da seção 6.2 e veremos como utilizar

um formulário HTML para o envio de dados como uma matriz para realizar a compra de 5

produtos, a recuperação dos dados da matriz e a geração de uma tabela HTML com os

dados recuperados.

O Exemplo 6.9 apresenta o código da página form_compras.php.

Exemplo 6.9. Código da página form_compras.php.

Após a recuperação dos dados dos produtos, o programa PHP gera uma tabela

HTML com os dados recuperados, além disso, calcula e apresenta o total de cada produto

e o total da compra, como mostra o Exemplo 6.10.

Dica:

Para obter o resultado do <form> enviado como um array para o script PHP, pode-se

nomear (atributo name) os elementos <input>, <select> ou <textarea>, tais como:

<input type="text" name="produtos[nome][]" />

<input type="number" name="produtos[quantidade][]" />

<input type="number" step="0.01" name="produtos[preco][]" />

Observe os colchetes após o nome da variável, é isso que torna uma variável um

array. Opcionalmente, é possível atribuir chaves específicas para os arrays no HTML,

por exemplo, “nome”, “quantidade” e “preco”. Se não especificar as chaves, o array

preenche na ordem sequencial em que os elementos aparecem no formulário, por

exemplo, chaves 0, 1, 2, 3 e assim por diante.

Exemplo 6.10. Código da página carrinho_compras.php.

6.5. Exercícios propostos

Exercício 1. Faça um formulário HTML para ler os elementos de um array (vetor) com 10

valores reais, enviar os elementos lidos para um programa em PHP que encontra e mostra

o maior e o menor valor armazenado no array.

Exercício 2. Faça um formulário HTML para ler os elementos de dois vetores: R de 3

elementos inteiros e S de 7 elementos inteiros. Os números lidos devem ser enviados para

um programa em PHP que gera um vetor X de 10 elementos cujas 3 primeiras posições

contenham os elementos de R e as 7 últimas posições, os elementos de S. Mostrar o vetor

X.

Exercício 3. Faça um formulário HTML para ler um vetor U de 10 elementos reais. A seguir,

os dados devem ser enviados para um programa em PHP, que troca o primeiro elemento

com o último, o segundo com penúltimo etc. até o quinto com o sexto e escreve o vetor U

assim modificado.

Exercício 4. Faça um formulário HTML para ler dois vetores, X e Y de 10 elementos inteiros

cada um. Os dados lidos são enviados a um programa em PHP, que intercala os elementos

desses dois vetores, formando assim um novo vetor R de 20 elementos, onde nas posições

ímpares de R estejam os elementos de X e nas posições pares os elementos de Y

(Considere o zero como PAR). O programa deve escrever o vetor R, após sua completa

geração.

Exercício 5. Faça um programa em PHP que receba o total das vendas de cada vendedor

de uma loja e armazene-os em um vetor. Receba também o percentual de comissão de

cada vendedor e armazene-os em outro vetor. Receba os nomes desses vendedores e

armazene-os em um terceiro vetor. Existem apenas 5 vendedores na loja. O programa deve

calcular e mostrar:

● Um relatório com os nomes dos vendedores e os valores a receber referentes

à comissão por suas vendas;

● O total das vendas de todos os vendedores;

● O maior valor a receber e o nome de quem o receberá;

● O menor valor a receber e o nome de quem o receberá.

Exercício 6. Faça um programa em PHP que armazena os nomes de sete alunos em um

vetor e que armazena também a média final desses alunos. O programa deve calcular e

mostrar:

● O nome do aluno com maior média (desconsiderar empates);

● A média da turma;

● A diferença entre a maior e a menor médias.

Exercício 7. Faça um programa em PHP que armazena os nomes de cinco produtos em

um vetor e os seus respectivos preços em outro vetor. O programa deve calcular e mostrar:

● A quantidade de produtos com preço inferior a R$ 50,00;

● O nome dos produtos com preço entre R$ 50,00 e R$ 100,00;

● A média dos preços dos produtos com preço superior a R$ 100,00.

Exercício 8. Faça uma página Web com um formulário HTML para preencher uma matriz

5x5 com números inteiros. Um programa em PHP deve calcular e mostrar a soma:

● dos elementos da linha 4;

● dos elementos da coluna 2;

● dos elementos da diagonal principal;

● dos elementos da diagonal secundária;

● de todos os elementos da matriz.

Exercício 9. Faça uma página Web com um formulário HTML para receber os valores das

vendas de uma loja. Os dados devem ser armazenados em uma matriz 12x4, em que cada

linha representa um mês do ano e cada coluna representa uma semana do mês. Um

programa deverá calcular e mostrar:

● O total vendido em cada mês do ano, mostrando o nome do mês por extenso;

● O total vendido em cada semana durante todo o ano, que os proprietários da

loja possam identificar a semana que mais teve vendas;

● O total vendido pela loja no ano.

Exercício 10. Faça uma página Web com um formulário HTML para receber o estoque

atual e o custo de três produtos de uma distribuidora, que são armazenados em quatro

armazéns. Os dados devem ser armazenados em uma matriz 5x3, sendo que as 4 primeiras

linhas contêm os estoques dos produtos nos armazéns e a última linha contém o custo de

cada produto. Um programa deverá calcular e mostrar (OBS: devem ser desconsiderados

empates):

● A quantidade de itens de produto armazenados em cada armazém;

● Qual armazém possui maior estoque do produto 2;

● Qual armazém possui menor estoque;

● Qual o custo total de cada produto;

● Qual o custo total de cada armazém.

Capítulo 7. Funções

Ao resolver um problema complexo, é comum dividi-lo em partes menores, ou seja,

resolver o problema em etapas. A cada uma das partes menores bem definidas chamamos

de módulo.

As funções (functions) são muito úteis para deixar o código dos programas mais

organizado e mais modular. Além disso, as funções nos poupam da tarefa de ter de repetir

determinado código toda vez que se precisa realizar uma tarefa.

7.1. Definição

As funções são programas menores inseridos em um programa principal ou em outro

arquivo, que pode ser chamado a qualquer instante para executar uma tarefa específica.

As funções podem realizar qualquer tipo de tarefa, por exemplo: somar dois números, testar

se o valor de uma variável é válido, verificar se um número de CPF é válido, transformar

uma string para letras maiúsculas, entre outras. A sintaxe para a construção de uma função

é:

function nome_funcao (arg1, arg2, arg3, ... , argn){
 //instruções
 [return < expressão >]
}

Onde function nome_funcao é um identificador único, seguindo as mesmas regras

de declaração de variáveis: não pode iniciar com número, não pode conter espaços,

vírgulas, ponto, entre outras.

Quando uma função é chamada, ela pode receber diversos valores, denominados

argumentos (arg1, arg2,..., argn). Estes argumentos ou parâmetros são valores recebidos

pela função no momento que ela é chamada. Após a função ser chamada, estes valores

são processados por ela. Cabe observar que é opcional a utilização de parâmetros. Neste

caso, a sintaxe é:

function nome_funcao (){
 //instruções
 [return < expressão >]
}

Neste caso, utilizamos o comando return quando queremos atribuir o valor retornado

a uma variável ou quando precisamos testar o valor de retorno de uma função. No exemplo

7.1, a função somar é criada e uma chamada para ela é incluída no programa principal.

Exemplo 7.1 – Código contendo função com parâmetros.

No momento que a função é chamada, a variável $operando1 receberá o valor da

variável $numero1 (primeiro argumento), e a variável $operando2 receberá o valor da

variável $numero2 (segundo argumento). Observe que as variáveis passadas como

parâmetro não precisam ter o mesmo nome dos argumentos definidos na função. O objetivo

da função é somar dois números e mostrar o resultado na tela e por isso o comando return

não é usado.

Já no exemplo 7.2, a mesma função somar é criada, porém, o valor final (resultado

da soma) é atribuído a variável $resultado (no programa principal).

Exemplo 7.2 – Código contendo função com parâmetros e retorno.

Uma função também pode retornar um array contendo vários elementos ao invés de

somente um, conforme o exemplo 7.3.

Exemplo 7.3 – Código contendo função que retorna um array.

No exemplo 7.5, a função ordenar classifica os nomes contidos na variável $vetor de

forma a ordená-lo alfabeticamente.

7.2. Escopo de variáveis

 O escopo de uma variável se refere ao contexto em que ela foi definida. As variáveis

que são declaradas dentro de uma função são chamadas variáveis locais e são conhecidas

somente dentro de seu próprio bloco, entre os símbolos abre e fecha chaves ({ }). Variáveis

locais existem apenas durante a execução do bloco de instruções onde estão declaradas,

ou seja, são criadas quando se entra no bloco e destruída na saída. O exemplo 7.4

apresenta variáveis locais e globais.

Exemplo 7.4 - Código contendo variáveis globais e locais.

Note que a variável $b é local, só existe no contexto da função Teste. Já a linha 5

contém um erro (mensagem de advertência) uma vez que uma variável global é

referenciada dentro da função. Para corrigir este erro é necessário inserir a palavra

reservada global antes do nome da variável, conforme descrito no exemplo 7.5.

Exemplo 7.5 – Código contendo variáveis globais e locais - corrigido.

As variáveis super globais são variáveis nativas do PHP e recebem esse nome pois

estarão presentes em qualquer escopo do programa. As variáveis $_GET, $_POST

(variáveis de requisição) e $_SESSION são consideradas superglobais pois são arrays

predefinidos contendo as variáveis do servidor Web.

Dica:

Para não haver ambiguidade nos códigos, utilize sempre variáveis locais. A maioria

das variáveis do PHP tem somente escopo local. Este escopo local inclui os arquivos

incluídos e requeridos (ver capítulo 9). Qualquer variável utilizada dentro de um

código ou dentro de uma função é, por padrão, limitada ao escopo local.

7.3. Passagem de parâmetros: valor e referência

Passagem de parâmetros por valor significa que a função receberá cópias dos

valores passados no momento que for chamada. Passagem de parâmetros por referência

significa que a função receberá endereços de memória com o conteúdo de variáveis. O

Exemplo 7.6 contém uma ilustração das duas situações.

Exemplo 7.6 – Código contendo funções com passagem de parâmetros.

No exemplo acima, a função dobro1 não altera o valor da variável após sua

chamada, pois seu valor é alterado somente dentro da função e não gera retorno. Já a

função dobro2 altera o valor da variável após sua chamada, pois o endereço de memória

da variável é acessado e seu valor pode ser acessado por outras funções ou pelo programa

principal.

7.4. Funções recursivas

Uma função recursiva é definida em termos de si mesma. Ou seja, é recursiva

quando dentro dela está chamada a ela própria. O Exemplo 7.7 apresenta o código que

calcula o fatorial de um número utilizando uma função recursiva.

Exemplo 7.7 – Código que calcula o fatorial de um número utilizando uma função recursiva.

No momento que a função é chamada, um número inteiro $numero é passado como

parâmetro e dentro da função o valor $numero-1 é passado como parâmetro novamente.

A mesma variável $numero acumula os valores das multiplicações sucessivas e em

seguida é retornada.

7.5. Juntando tudo!

Até aqui, foram apresentados diversos conceitos básicos para a construção de uma

página web dinâmica utilizando a linguagem PHP. O exemplo descrito nessa seção visa

juntar os conteúdos já vistos e aplicá-los em um caso prático.

Primeiramente, uma página index.html é criada com um formulário esperando os

dados de entrada. O usuário digita o preço de três mercadorias, smartphone, notebook e

smart tv. Em seguida, ele escolhe a forma de pagamento: a vista, a prazo em 3 vezes ou

a prazo em 5 vezes, conforme ilustrado no Exemplo 7.8.

Exemplo 7.8 – Página index.html que contém o formulário.

Quando o usuário submete o formulário, a página calc_desc.php é chamada. Esta

página calcula o valor da compra à vista, com ou sem desconto, conforme o Exemplo 7.9.

Exemplo 7.9 – Página calc_desc.php que calcula o valor da compra.

A função calcular recebe como parâmetros o total da compra ($total) e a condição

de pagamento ($cond). Se a compra for a vista, o desconto será de 10%. Se a compra for

a prazo em três vezes, terá um acréscimo de 10% e se for a prazo em 5 vezes, um

acréscimo de 20%.

7.6. Exercícios propostos

Exercício 1. Faça um programa em PHP que receba três valores (obrigatoriamente maiores

que zero), representando as medidas dos três lados de um triângulo. Elabore funções (sub-

rotinas) para:

• Validar se os valores informados são maiores que zero;

• Determinar se esses lados informados forma um triângulo (sabe-se que, para ser

triângulo, a medida de um lado qualquer deve ser inferior à soma das medidas dos

outros dois lados);

• Determinar e retornar o tipo de triângulo (equilátero, isósceles ou escaleno), caso as

medidas formem um triângulo.

* Todas as mensagens devem ser mostradas no programa principal (fora que qualquer

função).

 Exercício 2. Faça um programa em PHP para analisar as temperaturas médias de cada

mês do ano. Assim o programa deve conter as seguintes funções para:

• Receber a temperatura média de cada mês do ano e armazene-as em um vetor

(array);

• Receber um mês em número e retornar o mês por extenso: 0 – janeiro; 1 – fevereiro;

2 – março; ...);

• Calcular e retornar a maior temperatura do ano e em qual mês ocorreu;

• Calcular e retornar a menor temperatura do ano e em qual mês ocorreu;

• Calcular e retornar a média anual de temperaturas.

* Todas as mensagens devem ser mostradas no programa principal (fora que qualquer

função).

Capítulo 8. Cookies e Sessões

As aplicações desenvolvidas para Web podem oferecer diversas funcionalidades a

partir dos dados sobre os usuários enquanto eles navegam pelas páginas ou até mesmo

após eles deixarem um Website, possibilitando um aprimoramento da sua experiência de

navegação ou utilização do Website. Para implementação de tais funcionalidades, é

importante conhecer e saber manipular cookies e sessões por meio da linguagem PHP.

Quando diferentes usuários acessam e navegam nas páginas HTML de um Website,

o servidor Web trata esses acessos como requisições independentes. Ele não sabe que

pessoas diferentes estão acessando e requisitando suas páginas. Os mecanismos

fornecidos pelos cookies e pelas sessões permitem armazenar os dados de cada usuário

enquanto eles estiverem navegando entre as páginas de um Website, possibilitando a

utilização desses dados para diversos fins, tais como a autenticação de usuário, carrinho

de compras, exibição de anúncios e personalização de páginas, entre outros.

8.1 Cookies

Um cookie é um pequeno arquivo de texto que fica armazenado no dispositivo

(computador ou smartphone) do usuário. Ao requisitar uma página, o servidor Web envia a

resposta da requisição para o navegador. Em conjunto com essa resposta, o servidor

também pode enviar um cabeçalho HTTP Set-Cookie, solicitando que o navegador crie

cookies em seu dispositivo.

Os dados de um cookie podem ser recuperados posteriormente pelo servidor Web e

utilizados para identificação do usuário e lembrança de suas preferências (configurações

escolhidas, links clicados, tempo navegando no Website, itens de um carrinho de compras

etc.), permitindo inclusive, a personalização da página de acordo com o perfil do usuário. É

possível realizar também o compartilhamento de dados entre diferentes páginas, ou até

mesmo, diferentes acessos. Após sua criação, os dados do cookie são enviados para o

servidor Web em todas as novas requisições realizadas pelo navegador, permitindo a troca

de dados entre o navegador e o servidor.

Um cookie é formado por um par nome => valor (também descrito como chave =>

valor), ou seja, ele possui um nome (ou chave) pelo qual é referenciado e um valor

associado a este nome (ou chave). Cookies podem permanecer armazenados no

computador/smartphone dos usuários por vários dias ou somente durante o tempo em que

o navegador do usuário permanecer aberto. Em PHP, essas configurações do tempo para

o cookie expirar são realizadas no momento de sua criação por meio do parâmetro expire,

que faz parte da função setcookie(), uma das funções disponibilizadas para a manipulação

de cookies.

A função setcookie() é utilizada para enviar cookies ao dispositivo do usuário. A

execução dessa função permite tanto a definição de um cookie, quanto sua exclusão. Por

exemplo, para definição de um cookie que armazena o nome de uma pessoa, pode-se

utilizar o comando:

setcookie("usuario", "IFSP");

Neste caso, o valor “IFSP” estará associado ao nome/chave “usuario”. Ao fechar o

navegador, encerrando sua sessão, o cookie será excluído automaticamente.

Para que o cookie seja armazenado por um determinado período, é necessário

estabelecer uma data de expiração, como descrito a seguir:

setcookie("usuario", "IFSP", time() + 60 * 60);

Neste caso, o cookie será criado com a data atual (fornecida pela função time())

acrescida de uma hora (60 segundos vezes 60 minutos).

Para excluir esse cookie, basta utilizar a mesma função da seguinte forma:

setcookie("usuario", "IFSP", time() - 1);

Ao especificar “-1”, a data de expiração é configurada para um momento no passado,

acionando o mecanismo de remoção de cookies do navegador.

Importante:

Para que a remoção do cookie seja realizada, é necessário manter a mesma

quantidade de parâmetros que foram especificados no momento de sua criação. Caso

isso não ocorra, o cookie não será removido. No exemplo acima foram especificados

os parâmetros nome, valor e validade para a criação do cookie. Dessa forma, os

mesmos parâmetros devem ser especificados na função de remoção desse cookie.

Outros parâmetros possíveis para a função setcookie() estão descritos na tabela a

seguir:

Parâmetro Descrição

Nome (name) Indica o nome do cookie que está sendo enviado e é o único parâmetro
obrigatório para a função

Valor (value) É o valor do cookie. Se não for fornecido, o servidor tentará excluir o
cookie com o nome especificado

Validade (expire) Define o tempo de validado do cookie. Deve ser expresso no formato-
padrão de tempo do UNIX (número de segundos após 1º de janeiro de
1970, às 0h).

Caminho (path) Caminho no servidor para o qual o cookie estará disponível. Se for
definido o valor “/”, ele estará disponível para todo o domínio especificado
no parâmetro domínio. O valor padrão é o diretório corrente a partir do
qual o cookie foi definido

Domínio
(domain)

Domínio para o qual o cookie estará disponível.

Seguro (secure) É um valor inteiro (0 ou 1) que indica se o cookie é seguro. Se for utilizado
o valor 1, o cookie só será transmitido se a conexão for segura (HTTPS).

Somente HTTP
(httponly)

Se for igual a TRUE, o cookie estará acessível apenas sobre o protocolo
HTTP e não acessível para linguagens de script, tal como JavaScript.

Para que o código PHP de uma página consiga acessar os dados de um cookie no

dispositivo (computador ou smartphone) do usuário, utiliza-se o array superglobal

$_COOKIE. Caso o cookie seja definido como:

setcookie("usuario", "IFSP");

na próxima página acessada pelo usuário, esse valor pode ser recuperado da

seguinte forma:

$_COOKIE["usuario"];

Saiba mais:

Com o início de vigência da Lei Geral de Proteção de Dados Pessoais (LGPD),

em agosto de 2020, que dispõe sobre o tratamento de dados pessoais, inclusive

nos meios digitais, tornou-se fundamental o gerenciamento adequado dos cookies

criados por sua aplicação Web de acordo com a padronização de normas e práticas

estabelecidas por essa lei, sob risco de sanções e multas devido ao seu

descumprimento. Dessa maneira, sua aplicação Web deve coletar, utilizar ou

compartilhar dados pessoais em conformidade com as regulações estabelecidas

pela lei. Para mais informações, acesse:

LEI Nº 13.709, DE 14 DE AGOSTO DE 2018

(http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm).

8.1.1. Juntando tudo

No primeiro exemplo, é realizada a criação de um cookie por meio da função

setcookie(). O parâmetro inicial especifica a descrição (nome) do cookie, e o segundo

parâmetro especifica o valor associado ao nome. No body da página, o código PHP verifica

se o cookie foi criado. Em caso afirmativo, o nome do usuário é exibido. Caso contrário, a

mensagem genérica “Bem vindo, visitante!” é apresentada.

Exemplo 8.1 – Criação de cookie

A estilização a seguir foi utilizada para uma formatação simples da página:

http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm

Exemplo 8.2 – Criação de cookie (Estilização)

No segundo exemplo, é realizada a manipulação de cookies por meio de sua criação,

recuperação e remoção. Na página index.php são inseridos três formulários. Em cada um

deles, uma ação é associada a um script PHP específico, responsável pela implementação

da funcionalidade descrita pelo atributo value de cada botão do tipo submit incluído no

respectivo formulário.

Verifique o código fonte do arquivo index.php:

Exemplo 8.3 – Manipulação de cookies

No script registrar_acesso.php, o nome de usuário digitado no campo de texto

“usuario” do formulário é recuperado por meio da superglobal $_POST e atribuído à variável

$nome_usuario. A seguir, é atribuído à variável $expira a hora atual acrescida de 1 hora,

especificando a validade do cookie. Após isso, a função setcookie() registra o cookie.

Exemplo 8.4 – Criação de cookie

Já no script listar_usuario.php, utiliza-se a função isset() para verificar se existe

um nome/chave identificado por “usuario” no array de cookies $_COOKIE. Caso essa chave

exista no array, o valor associado a ela (nome do usuário) é exibido. Caso contrário, a

mensagem “Cookie inexistente!” é mostrada.

Exemplo 8.5 – Acesso e exibição do cookie criado

Por fim, no script remover_acesso.php, é realizada uma verificação similar a do

script listar_usuario.php. Se o cookie usuário existir, ele será removido por meio do código

da linha 3, que especifica “time() -1” para o parâmetro expire, configurando a data de

expiração para um momento no passado, de maneira que o mecanismo de remoção de

cookies do navegador é acionado.

Exemplo 8.6 – Remoção de cookie

8.2 Sessões

Uma sessão pode ser definida como o período de tempo no qual uma pessoa navega

pelas páginas de um Website. Assim, quando o site é acessado, uma nova sessão pode

ser iniciada. Nela, são registradas diversas variáveis que ficam armazenadas em arquivos

no servidor e que podem ser acessadas em qualquer página da aplicação, enquanto a

sessão estiver aberta. Cada sessão possui um identificador único, chamado de session ID

(SID).

Em PHP, uma sessão pode ser criada utilizando-se a função session_start(), que

possibilita também a restauração os dados de uma sessão, com base no session ID

corrente. Essa função deve ser chamada antes de qualquer saída produzida pelo

navegador (no início do arquivo). Uma outra forma de criar uma sessão é habilitando a

diretiva session.auto_start do arquivo php.ini, presente no servidor Web. Com essa

diretiva, sempre que um usuário entrar no site, uma sessão será criada automaticamente.

A primeira forma será adotada nos exemplos apresentados.

Ao registrarmos uma variável em uma sessão, ela se torna disponível para todas as

páginas que serão acessadas até o encerramento da sessão. Para registrar uma variável,

deve-se adicionar diretamente entradas ao array superglobal $_SESSION, conforme o

exemplo:

$_SESSION["usuario"] = "IFSP";

Caso uma variável de sessão tenha sido registrada e não for mais utilizada nos

próximos acessos, ela pode ser eliminada. Isto é feito por meio da função unset() do PHP,

como é mostrado no exemplo:

 if (isset($_SESSION["usuario"])){

 unset($_SESSION["usuario"]);

 }

Para demonstrar o funcionamento do registro de variáveis em uma sessão, considere

o exemplo abaixo, que utiliza duas páginas chamadas de pagina_1.php e pagina_2.php.

Na primeira página, são definidas e registradas duas variáveis de sessão e é exibido um

link para a segunda página. A segunda página recupera os dados da sessão e exibe os

valores atribuídos ainda na primeira página. O código da pagina_1.php é o seguinte:

Exemplo 8.7 – Sessões: Página 1

Na segunda página, é preciso, primeiramente, restaurar os dados da sessão por

meio da função session_start(). Em seguida, os valores das variáveis “nome” e

“sobrenome” são recuperados pelo acesso ao vetor $_SESSION. Veja o código:

Exemplo 8.8 – Sessões: Página 2

8.2.1. Juntando tudo

Neste exemplo utilizaremos formulários, envio de informações e sessões para

realizar o cadastro de diversos produtos em uma sessão utilizando uma única página

HTML.

Exemplo 8.9 – Formulário de cadastro dos produtos

Antes de entender o exemplo, é preciso conhecer a função empty(). Esta função

testa se uma determinada variável, informada como parâmetro, está vazia. Uma variável é

considerada vazia se ela não existir ou se o seu valor for igual a FALSE (falso). Para um

array, isso significa não possuir elemento algum.

A função empty() será utilizada para determinar o contexto do carregamento da

página. Ao aplicar, por exemplo, a função empty() no vetor superglobal $_POST, é possível

verificar se o carregamento da página atual foi realizado por meio da submissão de um

formulário ($_POST contendo dados de formulário), ou se a página está sendo aberta sem

receber informações da página anterior ($_POST vazio). Utilizaremos esse status do vetor

superglobal para estabelecer o momento de exibir o formulário de cadastro do produto e o

momento de registrar as informações de um produto na sessão.

No exemplo, o vetor superglobal $_SESSION também armazena uma flag com o

nome “cadastrou” para verificar se os dados de um formulário já foram devidamente

submetidos e registrados na sessão. Isto previne que, ao atualizar a página, o usuário

registre novamente os dados submetidos pelo formulário. Este artifício não previne,

contudo, que usuários cadastrem produtos com o mesmo nome.

O código a seguir pertence à página lista_produtos.php. Sua função é exibir todos

os produtos cadastrados na sessão e seus respectivos preços em uma tabela. O link para

essa página encontra-se abaixo do formulário exibido na página

form_cadastro_produto.php. Caso a sessão não possua produtos cadastrados (vetor

$_SESSION vazio), a página emite uma mensagem de alerta.

Exemplo 8.10 – Listagem de produtos (Parte 1)

Exemplo 8.11 – Listagem de produtos (Parte 2)

A estilização a seguir foi utilizada para uma formatação simples da página:

Exemplo 8.12 – Cadastro de produtos (Estilização)

8.3. Exercícios de fixação

Exercício 1. Faça uma página HTML com um formulário para o usuário informar as

preferências: cor de fundo (background-color) e tamanho do texto (text-size). Os dados

informados devem ser enviados para um programa PHP, que recebe os dados e os

armazena em cookies. Crie também um arquivo PHP que recupera os dados dos cookies

e gera uma página com as preferências do usuário.

Exercício 2. Faça um programa em PHP que gerencia os dados de pessoas,

armazenando-os em uma agenda de contatos. Assim, crie:

• Um programa form_cadastro_pessoa.php, como mostra a Figura 1, para receber os

dados de uma pessoa (nome, telefone e endereço) e armazene-os na sessão. Após

armazenar os dados, o programa deve apresentar a mensagem de sucesso.

• Um programa lista_pessoas.php para gerar uma tabela com os dados de todas as

pessoas, ou seja, a agenda de contatos do usuário, Figura 2.

• Um programa form_consulta_pessoa.php para que o usuário informe o nome da

pessoa e retorne os dados dessa pessoa ou uma mensagem que a pessoa não foi

encontrada, Figura 3.

Figura 1. Formulário de cadastro de pessoas

Figura 2. Lista de pessoas cadastradas

Figura 3. Formulário de consulta de pessoas

Capítulo 9. Importação com Include e Require

No desenvolvimento de software, existem muitas estratégias diferentes que podem

ser adotadas com o objetivo de reutilizarmos código. A reutilização de código permite

reduzir o esforço e custo de desenvolvimento e contribui para a melhoria da qualidade do

produto, uma vez que o código a ser reutilizado, muitas vezes, já é parte de outras

aplicações, portanto, foi testado e está funcionando. Em PHP, uma das estratégias de

reutilização de código aponta para a definição e inclusão de arquivos que contenham código

comum a diferentes partes da aplicação.

9.1. Comandos include e require

Suponha que seja necessário desenvolver uma aplicação Web que possua 20

páginas, e todas elas devem exibir um determinado menu (o mesmo menu). Uma primeira

abordagem para resolver este problema seria simplesmente escrever o código do menu

nas 20 páginas, mas esta seria uma solução ineficiente e difícil de manter. Se, em algum

momento, o menu tiver que ser modificado (por exemplo, adicionando-se ou removendo-se

algum link), todas as páginas que dependem deste menu precisarão ser alteradas. Dessa

forma, uma solução mais adequada seria definir o menu em uma página à parte e incluir

esta página em todas as partes da aplicação que necessitam dela. Em PHP, um dos

comandos que permitem incluir o conteúdo de uma página em outras páginas é o comando

include.

Quando o comando include é utilizado, todo o conteúdo do arquivo incluído é

copiado e avaliado no ponto do código onde o comando foi especificado. Por exemplo, se

o arquivo X.php incluir, em um dado ponto do código, o arquivo Y.php, todo o conteúdo de

Y.php (pode ser código HTML, PHP etc.) será copiado para o ponto do código onde o

comando include foi utilizado (é como se copiássemos manualmente todo o código de um

arquivo em outro). Os Exemplos 9.1 e 9.2 ilustram, respectivamente, o código do menu a

ser incluído e o código de um script qualquer que necessita do menu.

Exemplo 9.1 - Código do arquivo “menu.inc”.

Uma vez que o arquivo menu.inc foi criado, ele poderá ser incluído por qualquer

arquivo PHP por meio do comando include. Conforme o Exemplo 9.1 mostra, o conteúdo

do arquivo menu.inc é código HTML apenas, mas poderia conter código PHP também.

Além disso, a extensão “.inc” é apenas uma convenção para indicar que se trata de um

arquivo cujo conteúdo é incluído por outros arquivos na aplicação. O Exemplo 9.2 mostra o

código de um script em PHP que utiliza o comando include para incluir o conteúdo do

arquivo menu.inc. Retomando-se o exemplo inicial, nas 20 páginas da aplicação, o

comando include deverá ser especificado no local onde deve aparecer o menu. Caso seja

necessário modificar o menu, bastará modificar o código HTML do arquivo menu.inc, e as

alterações serão “enxergadas” por todas as páginas.

Exemplo 9.2 - Código de um arquivo em PHP que inclui o conteúdo de “menu.inc”.

De forma similar, no mesmo exemplo, outros dois comandos include poderiam ser

especificados para a reutilização de cabeçalhos e rodapés de uma aplicação. Para isso,

seriam criados os arquivos cabecalho.inc e rodape.inc, e em cada página da aplicação,

no topo e no rodapé, seria especificado o comando include para os arquivos criados.

Assim, um arquivo PHP pode incluir um ou vários arquivos por meio do comando include.

Nesse momento, vale fazermos a seguinte reflexão: O que acontecerá no código se o

arquivo a ser incluído não for encontrado ou não puder ser incluído por qualquer motivo?

Utilizando-se o comando include, uma advertência (não um erro) será produzida, e o

código continuará sendo executado. No exemplo, caso o arquivo menu.inc não seja

encontrado, o código do script que inclui este arquivo continuará funcionando (todas as

instruções especificadas após a chamada ao include serão executadas normalmente).

Entretanto, há situações em que não podemos permitir que o código continue sendo

executado caso o arquivo não possa ser incluído. Um exemplo seria o código de uma

aplicação que precise acessar um banco de dados. Suponha que, nesta aplicação, existem

vários scripts (vários arquivos PHP) que acessam e manipulam dados de tabelas em um

banco de dados. Sabemos que o primeiro passo para que uma aplicação se comunique

com um banco de dados é estabelecer uma conexão. Como existem vários scripts que

precisarão de uma conexão com o banco de dados, todo o código responsável pela

conexão pode ser escrito em um arquivo à parte e incluído pelos outros scripts. Neste caso,

se o arquivo responsável pela conexão não puder ser incluído, não poderemos permitir que

o código continue sendo executado, afinal a execução dos outros scripts depende da

obtenção de uma conexão com o banco de dados.

Assim, o comando include não é o mais adequado quando a inclusão de um ou mais

arquivos é crítica para a execução de um dado script. Neste tipo de situação, devemos

utilizar o comando require. Este comando é idêntico ao comando include, exceto pelo fato

de que, se utilizarmos o comando require, e o arquivo exigido não puder ser incluído, um

erro fatal será gerado pelo comando, e a execução do script será interrompida. O Exemplo

9.3 a seguir ilustra esta situação.

Exemplo 9.3 - Utilização do comando require em vez do comando include.

No exemplo inicial, como foi utilizado o comando include para a inclusão do menu,

caso, por algum motivo, o arquivo com o código do menu não pudesse ser incluído, o código

subsequente dos scripts que dependem do menu continuaria sendo executado

normalmente. Apenas o menu não seria exibido. Se esta é uma situação a ser evitada, isto

é, se o código dos scripts depende fortemente da inclusão do menu, o comando require

deverá ser utilizado no lugar do comando include.

9.2. Juntando tudo

Considere uma aplicação para locação de carros, contendo páginas para cadastro

de clientes, cadastro de carros e cadastro de locações realizadas. Todas as páginas devem

conter o mesmo cabeçalho e um menu com as funcionalidades da aplicação. Assim, estes

elementos podem ser definidos em arquivos separados e incluídos em todas as páginas

(utilizando-se include ou require). O código HTML do arquivo cabecalho.inc é apresentado

no Exemplo 9.4.

Exemplo 9.4 - Arquivo de cabeçalho a ser incluído em outras páginas (“cabecalho.inc”).

O código HTML do arquivo menu.inc é apresentado no Exemplo 9.5 a seguir. Dessa

forma, todas as páginas da aplicação deverão conter o comando include para os arquivos

de cabeçalho e menu.

Exemplo 9.5 - Arquivo com o menu a ser incluído em outras páginas (menu.inc).

O código da página inicial da aplicação Web (index.php) é apresentado no Exemplo

9.6 a seguir. Note que todas as páginas que utilizam comandos include ou require devem

ser arquivos escritos em PHP.

Exemplo 9.6 - Página inicial da aplicação (index.php).

O código da página de cadastro de clientes (arquivo form_cadastro_cliente.php) é

apresentado no Exemplo 9.7 a seguir. Neste arquivo, é necessário incluir, além dos

arquivos para o cabeçalho e o menu, o arquivo funcoes.inc, conforme será explicado

adiante. Se o array $_POST estiver vazio, ou seja, o conteúdo do formulário ainda não foi

submetido via método POST, o arquivo form_cliente.inc será incluído. O Exemplo 9.8 a

seguir apresenta o código do arquivo form_cliente.inc.

O arquivo form_cliente.inc contém o formulário HTML de cadastro de clientes, com

os campos nome, e-mail, endereço e telefone. Quando o usuário inserir os dados e clicar

no botão “Enviar”, o arquivo form_cadastro_cliente.php efetuará o tratamento da

requisição enviada via método POST. Dessa forma, o array $_POST não será mais vazio,

pois estará preenchido com os dados dos campos do formulário. Na sequência, será

chamada a função ler_dados_cliente(), definida no arquivo funcoes.inc, cujo código é

mostrado no Exemplo 9.9 a seguir.

Exemplo 9.7 - Página de cadastro de clientes (form_cadastro_cliente.php).

Exemplo 9.8 - Formulário a ser incluído (form_cliente.inc)

A função ler_dados_cliente() adiciona os dados recebidos do array $_POST no

array superglobal $_SESSION, para armazenar os clientes cadastrados durante uma

sessão. No fim da operação, a função exibe uma mensagem informando que o cliente foi

cadastrado com sucesso.

Exemplo 9.9 - Código do arquivo “funcoes.inc”

9.3. Comandos include_once e require_once

Suponha que exista um arquivo PHP denominado X.php que inclui (comando

include) um arquivo denominado Y.php, e ambos necessitam do arquivo Z.php. Os

Exemplos 9.10, 9.11 e 9.12 a seguir mostram, respectivamente, o código dos arquivos PHP

X, Y e Z. Conforme é mostrado, no arquivo X.php, existe uma função denominada testeX()

que chama as funções testeY() (Y.php) e testeZ() (Z.php). A função testeY(), por sua vez,

também chama a função testeZ().

Este código não é executado corretamente, e o erro produzido será “PHP Fatal error:

Cannot redeclare testeZ()”. O motivo é que, no arquivo X.php, são incluídos o conteúdo de

Y.php e o conteúdo de Z.php, mas, como Y.php também inclui Z.php, a função testeZ()

será especificada por duas vezes no script. Em outras palavras, é como se tivéssemos

declarado a mesma função por duas vezes. Para resolver este problema, deve-se adotar

uma estratégia para garantir que, caso um dado arquivo já tenha sido incluído na execução

de um script, ele não seja incluído novamente.

Exemplo 9.10 - Código do arquivo X.php.

Exemplo 9.11 - Código do arquivo Y.php.

Exemplo 9.12 - Código do arquivo Z.php.

Em PHP, existe um comando que permite incluir um dado arquivo somente se ele

não tiver sido incluído na execução do script. Este é o comando include_once. O

comportamento deste comando é similar ao comportamento do comando include, exceto

pelo fato de que, se o código de um dado arquivo já foi incluído, este não será incluído

novamente. Assim, a utilização deste comando permitirá evitar problemas como redefinição

de funções, conforme a situação anterior ilustrou. Para corrigir o código, as instruções

include “Z.php” devem ser trocadas por include_once “Z.php”, conforme é mostrado

nos Exemplos 9.13 e 9.14.

Exemplo 9.13 - Código do arquivo X.php utilizando include_once.

Exemplo 9.14 - Código do arquivo Y.php utilizando include_once.

Com base na correção, poderíamos pensar se seria necessário especificar o

comando include_once tanto no arquivo X.php (Exemplo 9.13) quanto no arquivo Y.php

(Exemplo 9.14). De fato, se, no arquivo X.php, é incluído primeiramente o arquivo Y.php,

e depois o arquivo Z.php, para que o script seja executado corretamente, o comando

include_once poderia ser utilizado apenas em X.php (Y.php incluirá primeiramente, e o

arquivo não será mais incluído). Entretanto, se, no arquivo X.php, a ordem de inclusão for

invertida, isto é, se o arquivo X.php incluir o arquivo Z.php e depois o arquivo Y.php, então

o comando include_once deverá ser utilizado em Y.php. Para que a corretude da solução

não dependa da ordem de inclusão dos arquivos, utilizamos o comando include_once em

ambos os arquivos.

Da mesma forma que a linguagem PHP disponibiliza o comando include_once para

garantir que um dado arquivo não seja incluído por mais de uma vez no mesmo script,

existe o comando require_once, utilizado quando o script exige um determinado arquivo e

se deve garantir que o arquivo seja exigido somente por uma vez. Portanto, o

comportamento deste comando é similar ao comportamento do comando require, exceto

pelo fato de que, se o código de um dado arquivo já foi incluído (exigido), este não será

incluído novamente. Note que os comandos include_once e require_once somente

incluirão/exigirão um arquivo se ele não tiver sido incluído por meio de qualquer um dos

seguintes comandos: include, require, include_once e require_once.

9.4. Exercícios propostos

Exercício 1. Com base no site de locadora de carros definido na Seção 9.2., faça o

programa PHP para o cadastro de carros (form_cadastro_carro.php presente no menu),

de forma similar ao cadastro de clientes. Devem ser incluídos os códigos HTML do

cabeçalho e do menu e o código do arquivo funcoes.inc, que deve conter uma função

chamada ler_dados_carro() para cadastrar os dados dos carros na sessão. Os dados de

cadastro dos carros são: marca, modelo, ano, placa, valor da diária em reais e estado (valor

0 para disponível e valor 1 para locado). Decida quais arquivos devem ser incluídos por

meio do comando include e quais devem ser exigidos por meio do comando require.

Exercício 2. A partir do exercício anterior, faça um programa em PHP para o cadastro de

locações (form_locacao_carros.php presente no menu), de forma similar ao cadastro de

clientes e de carros (inclua todos os arquivos necessários). No arquivo funcoes.inc,

implemente uma função chamada ler_dados_locacao() para cadastrar os dados das

locações na sessão. Os dados de cadastro das locações são: data da locação, uma lista

para selecionar um cliente dentre os clientes já cadastrados, uma lista para selecionar um

carro dentre os carros já cadastrados e disponíveis, e um campo para inserir a quantidade

de diárias.

Capítulo 10. Manipulação de arquivos

Uma das maneiras de armazenar dados com o objetivo de recuperá-los

posteriormente é trabalhando com o sistema de arquivos do sistema operacional. O PHP

permite abrir, fechar, ler, escrever e realizar outras funções sobre um arquivo de formato

conhecido. Para tanto, não é necessária a instalação de um SGBD (Sistema Gerenciador

de Banco de Dados) no servidor.

Começamos o capítulo apresentando exemplos de dados sendo gravados em

arquivos no formato texto. Vale lembrar que a manipulação desses arquivos é recomendada

somente quando o volume de dados é pequeno.

10.1. Funções de manipulação de arquivos texto

As principais funções de manipulação de arquivos são: abertura, fechamento, leitura,

gravação e escrita.

10.1.1. Abertura – fopen()

O primeiro passo para se ler ou gravar um arquivo é abri-lo, usando a função fopen(),

que possui a seguinte sintaxe:

bool fopen(string nome_arquivo, string modo_acesso)

O parâmetro nome_arquivo pode referenciar um arquivo local ou um arquivo em um

computador remoto. Se a abertura do arquivo falhar, a função retorna FALSE.

O segundo parâmetro se refere ao modo de acesso ao arquivo referenciado. Os

principais modos são listados na Tabela 10.1.

É uma boa prática verificar se o arquivo existe usando a função file_exists() antes

da abertura do arquivo no modo de leitura (“r” ou “r+”). O Exemplo 10.1 apresenta a

utilização da função de abertura de arquivo, juntamente com a função que verifica se um

arquivo existe.

Exemplo 10.1. Abertura de arquivo texto.

Note que os caminhos de arquivo no Exemplo 10.1 começam com um ponto, que

indica para o PHP abrir o arquivo a partir da pasta atual, a pasta do arquivo .php que está

solicitando a abertura de arquivo.

Tabela 10.1 - Modos de acesso ao arquivo.

Modo Descrição

'r' Abre somente para leitura, colocando o ponteiro no início do arquivo.

'r+' Abre para leitura e escrita, colocando o ponteiro no início do arquivo.

'w' Abre somente para escrita, colocando o ponteiro no início do arquivo, deixando-o com
tamanho zero. Se o arquivo não existir, tentará criá-lo.

'w+' Abre para leitura e escrita, colocando o ponteiro no início do arquivo, deixando-o com
tamanho zero. Se o arquivo não existir, tentará criá-lo.

'a' Abre somente para escrita, colocando o ponteiro no final do arquivo. Se o arquivo não
existir, tentará criá-lo.

'a+' Abre para leitura e escrita, colocando o ponteiro no final do arquivo. Se o arquivo não
existir, tentará criá-lo.

10.1.2. Fechamento – fclose()

Para fechar um arquivo, utiliza-se a função fclose(), que possui a seguinte sintaxe:

bool fclose($arquivo)

A função retorna TRUE se o arquivo foi fechado com sucesso e retorna false se

houver alguma falha O parâmetro é o nome da variável para qual foi atribuído a referência

do arquivo aberto. O Exemplo 10.2 mostra o fechamento do arquivo, após o seu uso.

Exemplo 10.2. Fechamento de arquivo texto.

10.1.3. Leitura - fread()

Com o arquivo aberto, utiliza-se a função fread() para obter seus dados, conforme a

seguinte sintaxe:

string fread(arquivo, int tamanho)

Essa função percorre o arquivo e lê o número de bytes especificado no parâmetro

tamanho. A leitura termina quando o número de bytes especificado é lido ou o fim de arquivo

é alcançado. Exemplo 10.3 apresenta a leitura em arquivo texto.

Exemplo 10.3. Leitura em arquivo texto.

O exemplo acima lê os primeiros 40 bytes do arquivo “./dados/produtos.txt” e os

armazena na variável $conteudo. Em seguida o valor obtido é exibido na tela e o arquivo é

fechado.

10.1.4. Leitura linha a linha - fgets()

 É possível realizar a leitura de um arquivo obtendo uma linha de cada vez. Uma das

maneiras de se obter uma linha de um arquivo é utilizando a função fgets():

string fgets(nome_arquivo, int tamanho_da_linha)

A leitura é feita seguindo a quantidade de bytes especificado em tamanho_da_linha

ou quando a linha terminar (\n). O valor padrão do tamanho da linha é 1024 bytes. O

Exemplo 10.4 ilustra o uso da função de leitura de linhas em arquivo texto.

 Exemplo 10.4. Leitura de linhas em arquivo texto.

10.1.5. Escrita - fwrite()

Para gravar dados em um arquivo, utiliza-se a função fwrite(), depois de ter aberto

o arquivo. A sintaxe é apresentada a seguir:

int fwrite(nome_arquivo, string conteúdo)

Essa função escreve o conteúdo especificado na variável nome_arquivo. O

Exemplo 10.5 ilustra o uso da função para escrita em arquivo texto.

Exemplo 10.5. Escrita de linhas em arquivo texto.

Note que o código acima tenta abrir o arquivo "./dados/produtos.txt" no modo de

escrita, sobrescrevendo seu conteúdo e gravando o texto contido nas variáveis $nome,

$estoque e $preco. Se o arquivo não existir, tentará criá-lo e, em seguida, o arquivo é

fechado.

10.2. Juntando tudo!

O Exemplo 10.6 apresenta um código completo para leitura e escrito em arquivo

texto.

Exemplo 10.6. Escrita e leitura de linhas em arquivo texto.

No Exemplo 10.6, o arquivo "./dados/produtos.txt" é aberto com atributo “w”

(aberto para escrita) e em seguida são escritos os dados de 2 produtos (nome, estoque e

quantidade), cada dado em uma linha de texto. Em seguida o mesmo arquivo é aberto, com

atributo “r” (aberto para leitura) e seu conteúdo é exibido na tela. Note que a função feof()

é utilizada para identificar se o final do arquivo foi atingido.

É importante ressaltar que é preciso ter permissão de acesso aos arquivos, seja na

pasta local ou no servidor Web.

10.3. Manipulação de arquivos no formato JSON

O formato JSON (JavaScript Object Notation) é baseado em JavaScript, mas é

independente de linguagens e plataformas. JSON foi criado por Douglas CrockFord em

1999 e foi formalizado pela RFC 4627 (IETF) em 2006.

JSON tem sido amplamente adotado na indústria de desenvolvimento e permite

representar com mais naturalidade certas estruturas como objetos e arrays.

A sintaxe JSON é idêntica à sintaxe utilizada para criar objetos em JavaScript, como

mostra o Exemplo 10.7.

Exemplo 10.7. Sintaxe do formato JSON.

Como mostra o Exemplo 10.7, um texto em JSON é uma sequência de tokens. O

conjunto de tokens inclui seis caracteres, strings, números, e três literais. Espaços em

branco são permitidos entre os tokens. JSON é baseado em duas estruturas: objetos e

arrays. A Tabela 10.2 apresenta os caracteres reservados do JSON.

Tabela 20.2 – Caracteres reservados do JSON.

Caractere Significado

[Início da definição de um array.

{ Início da definição de um objeto.

] Fechamento de um array.

} Fechamento de um objeto.

: Permite definir um par nome/valor.

, Permite separar um par nome/valor de outro par.

Um valor em JSON pode ser um objeto, um array, uma string, ou um número (inteiro

ou decimal). Há três literais que são aceitas como valores: null, false e true. Todas as

literais devem ser escritas em letras minúsculas e todos os valores devem ser escritos entre

aspas duplas, com exceção de números e literais.

Um uso comum de JSON é ler dados de um servidor da Web e exibir os dados em

uma página da Web. O PHP tem algumas funções integradas para manipulação de dados

no formato JSON.

Os objetos em PHP podem ser convertidos em JSON usando a função

json_encode(), como mostra o Exemplo 10.8.

Exemplo 10.8. Conversão de objeto PHP em JSON.

Os arrays em PHP também são convertidos em JSON ao usar a função

json_encode(), como apresenta o Exemplo 10.9.

Exemplo 10.9. Conversão de array PHP em JSON.

10.4. Juntando tudo!

Aqui apresenta-se um exemplo para inserção, edição, remoção e listagem de dados

de produtos armazenados em arquivos no formato JSON.

10.4.1. Inserção de dados

O arquivo produto_cadastro.php, Exemplo 10.10, inclui o arquivo de funções

funcoes.php e verifica se os dados do produto foram enviados.

Exemplo 10.10. Código do arquivo produto_cadastro.php.

Se os dados ainda não foram enviados (a superglobal $_POST está vazia), o arquivo

produto_form_cadastro.html, Exemplo 10.11, é apresentado ao usuário:

Exemplo 10.11. Código do arquivo produto_form_cadastro.html.

Se os dados já foram enviados (a superglobal $_POST está cheia), a função

cadastrarProduto() do arquivo funcoes.php é chamada, como apresenta o Exemplo

10.12.

Exemplo 10.12. Código da função cadastrarProduto().

Na linha 19, a função obterCodigo() é chamada para gerar o código do produto,

sequência de números crescente mantida no arquivo codigos.json. Se o arquivo existir, o

código é recuperado usando inicialmente a função file_get_contents() para abrir o obter

os dados do arquivo e depois decodificar os dados usando a função json_decode(), como

apresenta o Exemplo 10.13.

Exemplo 10.13. Código da função obterCodigo().

Após obter o código, os dados do produto são recuperados da superglobal $_POST

e armazenados no array $produto. Então, se o arquivo produtos.json existir, é solicitada

a abertura e a decodificação dos dados em formato JSON, que são armazenados no array

$dados. Os dados do novo produto não adicionados ao array $dados, codificados

novamente no formato JSON e armazenados no arquivo produtos.json, com uso da

função file_put_contents(). Na sequência, a função atualizarCodigo() é chamada para

incrementar o valor do código atual, como mostra o Exemplo 10.14.

Exemplo 10.14. Código da função atualizarCodigo().

Por fim, uma mensagem de sucesso é apresentada ao usuário na tela do navegador.

10.4.2. Listagem de dados

O arquivo produto_listagem.php, Exemplo 10.15, verifica se existe algum produto

cadastrado (arquivo produtos.json) e, se existir, o arquivo produto_tabela.php é incluído.

Do contrário, uma mensagem é apresentada para informar a não existência de dados de

produtos.

Exemplo 10.15. Código do arquivo produto_listagem.php.

No arquivo produto_tarefa.php, Exemplo 10.16, o cabeçalho da tabela HTML e

montado, o arquivo de funcoes.php é incluído e a função listarProdutos() é chamada.

Exemplo 10.16. Código do arquivo produto_tabela.php.

O Exemplo 10.17 apresenta o código da função listarProdutos(), que abre o arquivo

JSON com os dados dos produtos, decodifica os dados e coloca os dados em linhas da

tabela HTML. Note que os hiperlinks para edição e exclusão de cada produto são incluídos

na tabela.

Exemplo 10.17. Código da função listarProdutos().

10.4.3. Edição de dados

O arquivo produto_edicao.php, Exemplo 10.18, inclui o arquivo de funções

funcoes.php e verifica se os dados editados do produto foram enviados.

Exemplo 10.18. Código do arquivo produto_edicao.php.

Se os dados ainda não foram enviados (a superglobal $_POST está vazia), o arquivo

produto_form_edicao.php, Exemplo 10.19, é apresentado ao usuário:

Exemplo 10.19. Código do arquivo produto_form_edicao.php.

O código do produto que será editado é recuperado da superglobal $_GET e os

dados do produto são buscados com a chamada da função buscarProdutoPeloCodigo(),

como mostra o Exemplo 10.20.

Exemplo 10.20. Código da função buscarProdutoPeloCodigo().

Os dados do produto são carregados nos campos de texto do formulário HTML e, ao

submeter o formulário com os dados editados, a função editarProduto() é chamada,

Exemplo 10.21.

Exemplo 10.21. Código da função editarProduto().

10.4.4. Exclusão de dados

O arquivo produto_exclusao.php, Exemplo 10.22, inclui o arquivo de funções

funcoes.php e verifica se o código do produto foi enviado por meio da superglobal $_GET.

Exemplo 10.22. Código do arquivo produto_exclusao.php.

Se o código do produto foi enviado, a função excluirProduto(), Exemplo 10.23, é

chamada para efetuar a exclusão dos dados do produto.

Exemplo 10.23. Código da função excluirProduto().

10.5. Exercícios propostos

Exercício 1. Crie uma página web, com uso da linguagem PHP, que contém formulário

(<form>) para que o usuário configure a apresentação visual da página de boas-vindas,

gerando um arquivo CSS para:

a. Aplicar uma cor de fundo ao corpo da página.

b. Aplicar um tamanho de fonte, uma cor e um alinhamento ao texto (direita,

esquerda, centralizado) dos parágrafos.

c. Aplicar um alinhamento e uma cor de texto ao texto dos <h1>.

Exercício 2. Crie uma página web, com uso da linguagem PHP, que contém formulário

para entrada de dados de livros (título, autor, ano de publicação, número de páginas e

editora). Os dados inseridos no formulário deverão ser salvos em um arquivo texto. Crie

também uma página para apresentar os dados dos livros armazenados no arquivo.

Exercício 3. Crie uma página web que contém formulário para entrada de dados de alunos

(nome, nota da primeira prova, nota da segunda prova). Os dados inseridos no formulário

deverão ser salvos em um arquivo no formato JSON. Crie também uma página para

apresentar os dados dos alunos armazenados no arquivo, a média de notas de cada aluno

e a média de notas da turma.

Exercício 4. Sistema de Vendas de Produtos. Faça um programa em PHP que atua como

um sistema de vendas de produtos, que deve gerenciar basicamente as vendas de produtos

de um supermercado. Assim, crie (utilize funções, arquivos “.inc” – include, e arquivos

texto):

● Uma página inicial (index.php) com um cabeçalho (nome do supermercado), um

menu de opções e um rodapé com o contato do supermercado (endereço, telefone,

e-mail).

Uma página de cadastro de clientes (form_cadastro_cliente.php) para receber os

dados de um cliente (nome, endereço, telefone, e-mail e CPF) e armazene-os em

um arquivo no formato JSON (clientes.json). Após armazenar os dados, o programa

deve apresentar uma mensagem de sucesso.

● Uma página de cadastro de produtos (form_cadastro_produto.php) para receber

os dados de um produto (código, descrição e preço) e armazene-os em um arquivo

no formato JSON (produtos.json). Após armazenar os dados, o programa deve

apresentar uma mensagem de sucesso.

● Uma página de venda de produtos (form_venda_produtos.php) para receber os

dados de uma venda (data da venda, cliente – previamente cadastrado, produto –

previamente cadastrado, e quantidade vendida. Com base no preço do produto e

quantidade vendida, o programa deve calcular o valor total da venda. Os dados da

venda devem ser armazenados em um arquivo no formato JSON (vendas.txt). Após

armazenar os dados, o programa deve apresentar uma mensagem de sucesso.

● Uma página de listagem de clientes (lista_clientes.php) para gerar uma tabela com

os dados de todos os clientes cadastrados.

● Uma página de listagem de produtos (lista_produtos.php) para gerar uma tabela

com os dados de todos os produtos cadastrados.

● Uma página de listagem de vendas (lista_vendas.php) para gerar uma tabela com

os dados de todas as vendas realizadas.

Capítulo 11. Acesso a Banco de Dados

O phpMyAdmin é uma ferramenta de software livre escrita em PHP para manipular

os SGBDs MySQL e MariaDB (versão 5.5 ou mais recente) por meio de um navegador. As

operações usadas com frequência tais como gerenciamento de bancos de dados, tabelas,

colunas, relações, índices, usuários, permissões, entre outras, podem ser realizadas por

meio de um navegador. Além disso, é possível executar diretamente qualquer instrução

SQL. O phpMyAdmin importa dados de CSV e SQL e exporta dados para vários formatos:

CSV, SQL, XML, PDF, texto e planilha OpenDocument, Word, LATEX, entre outros.

11.1. Utilização do phpMyAdmin

O phpMyAdmin está presente na instalação do aplicativo XAMPP. Para inicializá-lo,

é preciso clicar no botão “Start” dos módulos Apache e MySQL, conforme ilustra a figura

11.1.

Figura 11.1 – Inicializando o Apache e o PhpMyAdmin.

Em seguida, vá até o browser e digite o URL: http://localhost/phpmyadmin/. Será

carregado o phpMyAdmin, conforme ilustra a figura 11.2.

http://localhost/phpmyadmin/

Figura 11.2 – Tela inicial do phpMyAdmin.

No painel à esquerda, é possível criar um banco de dados (botão ‘Novo’) ou escolher

entre os bancos de dados de exemplo disponíveis, já instalados por default

(information_schema, mysql, performance_schema, phpmyadmin e test). No menu de

opções, é possível ver a estrutura dos bancos de dados disponíveis, clicando em “Base de

Dados”, conforme ilustra a figura 11.3.

Figura 11.3 – Listagem de bancos de dados disponíveis.

O item já preenchido ‘utf8mb4_general_ci’ descreve o formato de dados a serem

armazenados (indiferente a maiúsculas e minúsculas).

A manipulação de dados de um banco de dados em uma página Web por meio do

PHP inclui os seguintes passos:

• Efetuar conexão com o servidor MySQL;

• Selecionar o banco de dados;

• Executar uma consulta SQL (ou adicionar, alterar, excluir registros, entre outras);

• Visualizar os resultados e;

• Encerrar a conexão.

11.2. Formas de acesso ao banco de dados

Existem algumas formas de acesso a um servidor de banco de dados MySQL

quando programamos em PHP, a saber, utilizando o MySQLi ou PDO (PHP Data Object –

Objeto de Dados PHP).

O MySQLi oferece uma API procedural, o que facilita a compreensão dos novos

usuários. A extensão PDO define uma interface para acessar bancos de dados em PHP,

fornecendo um acesso aos dados independente do banco de dados que você está usando,

usando as mesmas funções para realizar consultas. Na Figura 11.4 são exibidas as duas

formas de acesso.

Figura 11.4. Uso de MySQLi e PDO para conexão com o banco de dados.

A principal vantagem do PDO sobre o MySQLi está no suporte aos sistemas

gerenciadores de banco de dados. O PDO suporta 12 diferentes tipos de sistemas

gerenciadores de banco de dados (incluindo PostgreSQL, IBM, Oracle e MySQL), enquanto

o MySQLi suporta apenas MySQL.

Em termos de segurança, tanto o PDO quanto o MySQLi fornecem suporte para

consultas preparadas (prepared statemens). Isso ajuda a evitar problemas de segurança

de injeção de SQL (SQL injection - inserção de códigos impróprios), desde que você use

somente consultas preparadas para inserir parâmetros dinâmicos nas consultas.

// PDO
$pdo = new PDO('mysql:host=localhost;dbname=lojadb','root','password');

// MySQLi
$mysqli = mysqli_connect('localhost', 'username', 'password', 'lojadb');

PDO possui os prepared statemens, que é uma forma da consulta não ser enviada

diretamente ao servidor, passando por uma etapa de preparação prévia. Temos uma

ilustração de uma consulta preparada na Figura 11.5.

Figura 11.5. Preparando a consulta antes de enviá-la ao servidor.

Os atributos de busca da cláusula WHERE são recebidos por ?, para que haja a

preparação. Depois, a execução recebe os parâmetros reais da query.

Em suma, o MySQLi é um recurso mais antigo e mais desenvolvido, além de ter

melhor performance, quando o banco de dados utilizado for o MySQL. Já o PDO

proporciona portabilidade entre bancos, além de substituir o MySQLi a partir da versão 7.

11.3. Conexão ao banco de dados

Utilizaremos as conexões por meio da criação de instâncias da classe PDO (PHP

Data Object – objeto de dados PHP). A extensão PDO define uma interface para acessar

bancos de dados em PHP, fornecendo um acesso aos dados independente do banco de

dados que você está usando, usando as mesmas funções para realizar consultas. Para

trabalhar com um banco de dados em uma página web, é necessário criar uma variável que

contenha uma conexão com o servidor MySQL, conforme sintaxe abaixo:

Por exemplo:

Onde:

• $pdo é a variável que contém a conexão com o servidor MySQL;

• PDO é uma função do PHP para abrir uma conexão com o servidor;

• localhost é o nome do servidor local;

• root é o nome do usuário do banco de dados e;

• admin é a senha do usuário root.

<?php
 $sql = $pdo->prepare('SELECT * FROM clientes WHERE nome=? AND idade = ?');
 $sql->execute(array('José', 35));
 $resultado = $sql->fetchAll();
?>

$<nome_var> = new PDO(“<nome_do_servidor>”, “nome_bd”, “usuário”, “senha”);

$pdo = new PDO('mysql:host=localhost;dbname=lojadb','root','');

11.4. Execução de consultas SQL

Após a conexão com o banco de dados, o próximo passo é criar uma variável que

contém as instruções SQL para manipulação dos dados das tabelas do banco de dados,

conforme sintaxe abaixo:

Por exemplo:

Onde:

• $consulta é a variável que contém a instrução SQL;

• $pdo é a variável que contém a conexão com o servidor MySQL e;

• $sql é o nome da variável que contém o resultado da instrução SQL.

O exemplo acima seleciona todos os registros da tabela “produtos”.

11.5. Manipulação dos resultados da consulta

O próximo passo incluir a criação de uma variável responsável por armazenar o

resultado da execução da instrução SQL, de forma que possa ser exibido pelo navegador,

conforme sintaxe abaixo:

Por exemplo:

Onde:

• $sql é o nome da variável que contém a instrução SQL;

• $resultado é a variável que contém o resultado da pesquisa SQL (array) e;

• fetchAll() é uma função que retorna um array com todas as linhas da consulta.

$<nome_var_sql> = "<instrução SQL>";

$<var_resultado_sql> = $<var_pdo> -> prepare(<nome_var_sql>);

$<var_resultado_sql> ->execute();

$consulta = "SELECT * FROM produtos";

$sql = $pdo->prepare($consulta);

$sql ->execute();

$<nome_var_resultado> = $<nome_var_sql> -> fetchAll();

$resultado = $sql->fetchAll();

Na sequência, é preciso formatar o resultado obtido pela consulta. Para a exibição

correta dos campos de uma tabela, é possível separar seus registros por linha, utilizando a

função fetchAll() e o laço de repetição foreach, conforme a sintaxe abaixo:

Por exemplo:

Onde:

• $resultado é a variável que contém o resultado da pesquisa SQL (array);

• $key é a variável que contém o ponteiro do array e;

• $coluna é a variável que contém as colunas da tabela.

11.6. Encerramento da conexão

O último passo se refere ao encerramento da conexão com uma tabela de um banco

de dados. Quando terminar de utilizar uma tabela, deve-se fechá-la e encerrar a conexão

com o MySQL, seguindo a sintaxe abaixo:

Observação: não é necessário pois a conexão é fechada automaticamente após a

execução do script.

11.7. Juntando tudo!

Até aqui, foram apresentados diversos conceitos básicos para o acesso e

manipulação de dados de um banco de dados utilizando a linguagem PHP. O exemplo

descrito nessa seção visa juntar os conteúdos já vistos e aplicá-los em um caso prático.

foreach ($<nome_var_resultado> as $<chave> -> $<valores>) {

 echo 'Valor1 : '.$value['valor1'];
 echo '
';
 echo 'Valor2: '.$value['valor2'];
 echo '<hr>';
}

$resultado = $sql->fetchAll();

foreach ($resultado as $key => $coluna) {

 echo 'Código: '.$coluna['codigo'];
 echo '
';
 echo 'Nome: '.$coluna['nome'];
 echo '<hr>';
}

$pdo = null;

Primeiramente, vamos criar um banco de dados para estudar a interface do

phpMyAdmin. O nome do banco de dados será “lojadb”. Em seguida, vamos criar a tabela

“produtos”, conforme é apresentado na Tabela 11.1.

Tabela 11.1 – Estrutura da tabela “produtos”.

Nome do Campo Tipo Tamanho Chave primária

Código int 5 Sim

Descrição varchar 50 Não

Marca varchar 50 Não

Preço float Não

Em seguida, apresenta-se um exemplo para inserção, edição, remoção e listagem

de dados de produtos armazenados na tabela “produtos” no banco de dados “lojadb”.

11.7.1. Inserção de dados

Vamos escrever a página form_inserir.html que contém um formulário para

cadastro de um novo produto, conforme o Exemplo 11.1.

Exemplo 11.1 – Página form_inserir.html.

O arquivo cadastrar.php, Exemplo 11.2, realiza o cadastro do produto com as

informações recebidas do formulário da página form_inserir.html.

Exemplo 11.2 – Página cadastrar.php.

Note que os dados dos campos passados como parâmetros são inseridos num array

(linha 23) e então a consulta é executada, impedindo a inserção de dados indevidos

diretamente na instrução SQL.

11.7.2. Listagem de dados

Vamos escrever o código que exibe todos os dados da tabela “produtos” a partir

de uma consulta SQL. Os resultados são exibidos no formato de tabela HTML, conforme e

exemplo 11.3.

Exemplo 11.3 – Página listar.php.

A conexão com o banco de dados “lojadb” é realizada na linha 10. Note que são

especificados o servidor “localhost” e o usuário “root”, sem senha. A variável $consulta

contém a instrução SQL responsável por retornar todos os registros da tabela “produtos”.

Entre as linhas 17 e 20 é possível verificar se houve um erro na execução da consulta.

A linha 36 é criado um array $reg que contém o resultado obtido na consulta. Em

seguida, é criada uma tabela em HTML com os títulos “código”, “descrição”, “marca” e

“preço”, informações obtidas da tabela “produtos” do banco de dados “lojadb”, por meio

da estrutura foreach.

11.7.3. Edição de dados

Vamos escrever o código que altera os dados da tabela “produtos” a partir de uma

consulta SQL. Primeiramente, vamos escrever a página form_editar.html para obter os

dados que serão atualizados, conforme o Exemplo 11.4.

Exemplo 11.4 – Página form_editar.html.

Esta página contém um formulário nomeado “editar” e carrega a página “editar.php”

quando clicamos em “Enviar”. É pertinente frisar que somente será possível editar os dados

de um produto já existente (código já existente). O Exemplo 11.5 ilustra a página

editar.php.

Exemplo 11.5 – Página editar.php.

Primeiramente, os dados recebidos são testados (linha 13). É importante frisar a

escrita da condição WHERE da consulta SQL (linha 20), uma vez que somente será

possível editar um produto já existente. Além disso, o código é protegido contra instruções

SQL impróprias inserindo-se os caracteres ‘?’ na instrução SQL (linha 20). Estes caracteres

são substituídos por um array com os dados das variáveis (na ordem em que aparecem)

na instrução UPDATE quando a instrução é executada (linha 23).

11.7.4. Remoção de dados

Vamos escrever o código que apaga os dados da tabela “produtos” a partir de uma

consulta SQL. Primeiramente, vamos escrever a página form_apagar.html para obter os

dados que serão removidos, conforme o Exemplo 11.6.

Exemplo 11.6 – Página form_apagar.html

Esta página contém um formulário nomeado “apagar” e carrega a página

“apagar.php” quando clicamos em “Enviar”. É pertinente frisar que somente será possível

remover os dados de um produto já existente (código já existente). O Exemplo 11.7 contém

o código da página apagar.php.

Exemplo 7.7. Página apagar.php

Primeiramente, os dados recebidos são testados (linha 13). É importante frisar a

escrita da condição WHERE da consulta SQL (linha 21), uma vez que somente será

possível editar um produto já existente. Além disso, o código é protegido contra instruções

SQL impróprias inserindo-se o caractere ‘?’ na instrução SQL (linha 20). Este caractere é

substituído por um array com os dados das variáveis (na ordem em que aparecem) na

instrução DELETE quando a instrução é executada (linha 20).

11.8. Exercícios propostos

Exercício 1. Faça um programa em PHP que faça uma consulta no banco de dados

“lojadb”, na tabela “produtos” listando todas as informações dos produtos ordenadas

pelo preço de cada mercadoria (mais baratos primeiro).

Exercício 2. Faça um programa em PHP que faça uma consulta no banco de dados

“lojadb”, na tabela “produtos” listando todas as informações dos produtos ordenadas

pela marca de cada mercadoria (ordem alfabética).

Exercício 3. Faça um programa em PHP que faça uma alteração de um registro no banco

de dados “lojadb”, na tabela “produtos” primeiramente listando todos os códigos dos

produtos existentes.

Exercício 4. Faça um programa em PHP que faça uma exclusão de um registro no banco

de dados “lojadb”, na tabela “produtos” primeiramente listando todos os códigos dos

produtos existentes.

Referências Bibliográficas

LIMA JR, L. E. de Um pouco da história da linguagem de programação PHP. Disponível em:

<http://www.naninho.blog.br/web/php/um-pouco-da-historia-da-linguagem-de-

programacao-php.html>. Acesso em: 26 mar. 2018.

MILANI, A. Construindo Aplicações Web com PHP e MySQL. 2 ed. São Paulo: Novatec, 2010.

NIEDERAUER, J. Desenvolvendo Websites com PHP. 3. ed. São Paulo: Novatec, 2017.

WATANABE, W. M. Comunicação cliente/servidor - HTTP. Disponível em:

<https://pt.slideshare.net/watinha1/apresentacao-17018075>. Acesso em: 20 mar. 2018.

